NCMW - Introduction to Statistical Learning Techniques (2024)
Speakers and Syllabus
Speaker |
Number of Lectures |
Syllabus |
Dr. Arindam Chatterjee (ArC) |
Linear Regression 4 lectures (6 hours) |
|
Dr. Anirvan Chakraborty (AnC) |
Nonparametric Regression 4 lectures (6 hours) |
|
Dr. Subhajit Dutta (SD) |
Supervised Classification I 4 lectures (6 hours) |
|
Dr. Soham Sarkar (SS) |
Supervised Classification II 4 lectures (6 hours) |
|
Dr. Shyamal Krishna De (SKD) |
Unsupervised Classification 4 lectures (6 hours) |
|
Dr. Minerva Mukhopadhyay (MM) |
Bayesian Methods in Machine Learning 4 lectures (6 hours) |
|
Speakers:
1. Dr. Anirvan Chakraborty, IISER, Kolkata (AnC)
2. Dr. Arindam Chatterjee, ISI, Delhi (ArC)
3. Dr. Minerva Mukhopadhyay, IIT, Kanpur (MM)
4. Dr. Shyamal Krishna De, ISI, Kolkata (SKD)
5. Dr. Subhajit Dutta, IIT, Kanpur (SD)
6. Dr. Soham Sarkar, ISI, Delhi (SS)
Tutors :
1. Dr. Buddhananda Banerjee, IIT, Kharagpur (BB)
2. Mr. Bilol Banerjee, ISI, Kolkata (BLB)
3. Dr. Debashis Chatterjee, Biswa Bharati University, Santiniketan (DC)
4. Dr. Raju Maiti, ISI, Kolkata (RM)
5. Mr. Sourav Chakrabarty, ISI, Kolkata (SC)
6. Dr. Satyaki Majumder, IISER, Kolkata (SM)
Time Table
Date |
Lecture 1 10:00-11:30 |
Tea 11:30-12:00 |
Lecture 2 12:00-1:30 |
Lunch 1:30-3:00 |
Tutorial 1 3:00-4:00 |
Tea 4:00-4:30 |
Tutorial 2 4:30-5:30 |
|
|
|
FIRST WEEK
|
|
|
|
|
01.07.24 Mon |
Linear Regression (ArC) |
|
Penalization and Variable Selection (ArC) |
|
Linear Regression (ArC, DC, BB) |
|
Penalization and Variable Selection (ArC, DC, BB) |
02.07.24 Tuesday |
LASSO I (ArC) |
|
LASSO II (ArC) |
|
LASSO (ArC, DC, BB) |
|
LASSO (ArC, DC, BB) |
03.07.24 Wednesday |
Nonlinear Regression (AnC) |
|
Nonparametric Regression (AnC) |
|
Nonlinear Regression (AnC, SM, SC) |
|
Nonparametric Regression (AnC, SM, SC) |
04.07.24 Thursday |
Wavelet Methods (AnC) |
|
Regression Tree (AnC) |
|
Wavelet Methods (AnC, SM, SC) |
|
Regression Tree (AnC, SM, SC) |
05.07.24 Friday |
Introduction to Machine Learning (SD) |
|
Parametric Classifiers (SD) |
|
Introduction to Machine Learning (SD, RM, SM ) |
|
Parametric Classifiers (SD, RM, SM) |
06.07.24 Saturday |
Classifiers based on nonparametric density estimates (SD) |
|
Classification tree and Random forest (SD) |
|
Classifiers based on nonparametric density estimates (SD, RM, SM) |
|
Classification tree and Random forest (SD, RM, SM) |
|
|
|
SECOND WEEK
|
|
|
|
|
08.07.24 Monday |
Kernel Methods (SS) |
|
Support Vector Machines (SS) |
|
Kernel Methods (SS, BLB, DC) |
|
Support Vector Machines (SS, BLB, DC) |
09.07.24 Tuesday |
Neural Networks I (SS) |
|
Neural Networks II (SS) |
|
Neural Networks I (SS, BLB, DC) |
|
Neural Networks II (SS, BLB, DC) |
10.07.24 Wednesday |
Principal Component Analysis (SKD) |
|
Cluster Analysis
(SKD) |
|
Principal Component Analysis (SKD, SC, BLB) |
|
Cluster Analysis
(SKD, SC, BLB) |
11.07.24 Thursday |
Spectral Clustering
(SKD) |
|
Multidimensional Scaling and Self-organizing Maps (SKD) |
|
Spectral Clustering
(SKD, SC, BLB) |
|
Multidimensional Scaling and Self-organizing Maps (SKD, SC, BLB) |
12.07.24 (Friday) |
Bayesian Variable Selection (MM) |
|
Sliced Inverse Regression (MM) |
|
Bayesian Variable Selection (MM, RM, BB) |
|
Sliced Inverse Regression (MM, RM, BB) |
13.07.24 Saturday |
Variable Selection in Classification (MM) |
|
Bayesian Nonparametric Methods (MM) |
|
Variable Selection in Classification (MM, RM, BB) |
|
Bayesian Nonparametric Methods (MM, RM, BB) |