AIS - Stochastic Processes (2023)

Speakers and Syllabus


 


Name of the Speaker with affiliation

No. of Lectures

Detailed Syllabus

Suprio Bhar,
IIT, Kanpur
10

Measure theoretic Probability I: Caratheodory extension theorem , Monotone class theorem, Dynkin’s pi-lambda theorem, MCT, Fatou’s Lemma, DCT, Fubini’s theorem. Probability spaces, random variables and random vectors, expected value and its properties.

Anish Sarkar

ISI, Delhi

10

Measure theoretic Probability II: Independence. Various modes of convergence and their relation. The Borel-Cantelli lemmas. Weak Law of large numbers for i.i.d. finite mean case. Kolmogorov 0-1 law, Kolmogorov’s maximal inequality. Statement of Kolmogorov’s three-Series theorem (proof if time permits). Strong law of large numbers for i.i.d. case. Characteristic functions and its basic properties, inversion formula, Levy’s continuity theorem. Lindeberg CLT, CLT for i.i.d. finite variance case, Lyapunov CLT.

Manjunath Krishnapur

IISc, Bengaluru

10

Conditional probability and martingales I: Absolute continuity and singularity of measures. Hahn-Jordon decomposition, Radon-Nikodym Theorem, Lebesgue decomposition. Conditional expectation – Definition and Properties. Regular conditional probability, proper RCP. Regular conditional distribution.

Soumendu Sudar Mukherjee

ISI, Kolkata

10

Brownian Motion I: Introduction to Brownian Motion, Kolmogorov Consistency theorem, Kolmogorov Continuity theorem, Construction of BM. Basic Martingale Properties and path properties – including Holder continuity and non-differentiability.

Arup Bose

ISI, Kolkata

10

Conditional probability and martingales II: Discrete parameter martingales, sub-and super-martingales. Doob’s Maximal Inequality, Upcrossing inequality, martingale convergence theorem, Lp inequality, uniformly integrable martingales, reverse martingales, Levy’s upward and downward theorems. Stopping times, Doob’s optional sampling theorem. Discrete martingale transform, Doob’s Decomposition Theorem. Applications of martingale theory: SLLN for i.i.d. random variables.

Alok Goswami

IACS, Kolkata

10 Brownian Motion II: Quadratic variation. Markov Property and strong Markov property of BM, reflection principle, Blumenthal’s 0-1 law. Distributions of first passage time and of running maximum of BM.

References:
    1. Probability and Measure Theory: Robert B. Ash and Catherine A. Doleans-Dade
    2. A Course in Probability Theory: Kai Lai Chung.
    3. Probability and Measure: Patrick Billingsley
    4. Probability Theory: Leo Breiman
    5. Brownian motion: P. Morters and Y. Peres

(Lecture notes from the speakers, if available)


Time Table

Time-Table
(with names of speakers and course associates/tutors)

Day

Date

Lec 1&2
9.00
to
11.00

Tea
11.05
to
11.25

Tut
11.30

to
12.30

Lunch
12.30
to
2.25

Lect 3&4
2.30

to
4.30

Tea
4.35

to
4.55

Tut
5.00

to
6.00

Snacks
6.05

to
6.30

 

 

(name of the speaker)

 

(name of the speaker + tutors)

 

(name of the speaker)

 

(name of the speaker + tutors)

 

Mon

Week

1

SB

 

SB & SC

 

AS

 

AS & PS

 

Tues

SB

 

SB  & SC

 

AS

 

AS & PS

 

Wed

SB

 

SB & SC

 

AS

 

AS & PS

 

Thu

SB

 

SB & SC

 

AS

 

AS & PS

 

Fri

 

SB

 

SB & SC

 

AS

 

AS & PS

 

Sat

Tutorial
(NKJ, SC, PS)

 

Tutorial
(NKJ, SC, PS)

 

Tutorial
(NKJ, SC, PS)

 

Tutorial
(NKJ, SC, PS)

 

SUNDAY : OFF

Mon

Week

2

SSM

 

SSM & SC

 

MK

 

MK & PS

 

Tues

SSM

 

SSM & SC

 

MK

 

MK & PS

 

Wed

SSM

 

SSM & SC

 

MK

 

MK & PS

 

Thu

SSM

 

SSM & SC

 

MK

 

MK & PS

 

Fri

SSM

 

SSM & SC

 

MK

 

MK & PS

 

Sat

Tutorial
(NKJ, SC, PS)

 

Tutorial
(NKJ, SC, PS)

 

Tutorial
(NKJ, SC, PS)

 

Tutorial
(NKJ, SC, PS)

 

SUNDAY : OFF

Mon

Week

3

AG

 

AG & SC

 

AB2

 

AB2 & PS

 

Tues

AG

 

AG & SC

 

AB2

 

AB2 & PS

 

Wed

AG

 

AG & SC

 

AB2

 

AB2 & PS

 

Thu

AG

 

AG & SC

 

AB2

 

AB2 & PS

 

Fri

AG

 

AG & SC

 

AB2

 

AB2 & PS

 

Sat

Feedback collection and concluding session

File Attachments: