IST - Advanced Topics in Statistical Learning (2022)
Speakers and Syllabus
Speaker |
Number of Lectures (1.5 hour for each lecture) |
Syllabus |
Prof. Ayanendranath Basu |
4 lectures (6 hours) |
|
Dr Anirvan Chakraborty |
4 lectures (6 hours) |
|
Prof. Anil K. Ghosh |
4 lectures (6 hours) |
|
Dr Shyamal Krishna De |
4 lectures (6 hours) |
|
Dr Kiranmoy Das |
4 lectures (6 hours) |
|
Prof Samarjit Das |
4 lectures (6 hours) |
|
Speakers:
-
Prof. Ayanendranath Basu, ISI, Kolkata (AB)
-
Prof. Anil K. Ghosh, ISI, Kolkata (AKG)
-
Prof. Samarjit Das, ISI, Kolkata (SD)
-
Dr. Anirvan Chakraborty, IISER, Kolkata (AC)
-
Dr. Kiranmoy Das, ISI, Kolkata (KD)
-
Dr. Shyamal Krishna De, ISI, Kolkata (SKD)
Tutors :
-
Dr. Raju Maiti, ISI, Kolkata (RM)
-
Dr. Debashis Chatterjee, Biswa Bharati University, Santiniketan (DC)
-
Dr. Buddhananda Banerjee, IIT, Kharagpur (BB)
-
Dr. Satyaki Majumder, IISER, Kolkata (SM)
-
Dr. Jayabrata Biswas, University of Burdwan (JB)
-
Dr. Kiranmoy Chatterjee, West Bengal State University, Barasat (KC)
Time Table
Tentative Schedule
Date |
Lecture 1 10:00-11:30 |
Tea 11:30-12:00 |
Lecture 2 12:00-1:30 |
Lunch 1:30-3:00 |
Tutorial 1 3:00-4:00 |
Tea 4:00-4:30 |
Tutorial 2 4:30-5:30 |
|
|
|
FIRST WEEK
|
|
|
|
|
11.07.22 Mon |
Multiple Linear Regression (AB) |
|
Regression Diagnostics (AB) |
|
Multiple Linear Regression (AB, SM, BB) |
|
Regression Diagnostics (AB, SM, BB) |
12.07.22 Tuesday |
Variable Selection (AB) |
|
Quantile Regression (AB) |
|
Variable Selection (AB, SM, BB) |
|
Quantile Regression (AB, SM, BB) |
13.07.22 Wednesday |
Nonlinear Regression (AC) |
|
Nonparametric regression (AC) |
|
Nonlinear Regression (AC, RM, KC) |
|
Nonparametric regression (AC, RM, KC) |
14.07.22 Thusday |
Regression Tree (AC) |
|
Functional Regression (AC) |
|
Regression Tree (AC, RM, KC) |
|
Functional Regression (AC, RM, KC) |
15.07.22 Friday |
Introduction to Time Series (SD) |
|
Estimation of Trends (SD) |
|
Introduction to Time Series (SD, RM, BB) |
|
Estimation of Trends (SD, RM, BB) |
16.07.22 Saturday |
Different Time Series Models (SD) |
|
Forecasting (SD) |
|
Different Time Series Models (SD, RM, BB) |
|
Forecasting (SD, RM, BB) |
|
|
|
SECOND WEEK
|
|
|
|
|
18.07.22 Monday |
Association measures for categorical data (KD) |
|
Generalized linear models (KD) |
|
Association measures for categorical data (KD, JB, KC) |
|
Generalized linear models (KD, JB, KC) |
19.07.22 Tuesday |
Logistic regression & Poisson reg. (KD) |
|
Introduction to graphical models (KD) |
|
Logistic regression & Poisson reg. (KD, JB, KC) |
|
Introduction to graphical models (KD, JB, KC) |
20.07.22 Wednesday |
Introduction to classification (AKG) |
|
Parametric classifiers (AKG) |
|
Introduction to classification (AKG, DC, SM) |
|
Parametric classifiers (AKG, DC, SM) |
21.07.22 Thursday |
Nonparametric classifiers (AKG) |
|
Support vector machines (AKG) |
|
Nonparametric classifiers (AKG, DC, SM) |
|
Support vector machines (AKG, DC, SM) |
22.07.2022 (Friday) |
Neural netwros & deep learning (SKD) |
|
Cluster Analysis (SKD) |
|
Neural netwros & deep learning (SKD, DC, JB) |
|
Cluster Analysis (SKD, DC, JB) |
23.07.22 Saturday |
Principal component analysis (SKD) |
|
Independent component analysis (SKD) |
|
Principal component analysis (SKD, DC, JB) |
|
Independent component analysis (SKD, DC, JB) |