Syllabus: This three week school will give an introduction to the basics of algebraic geometry. The first week will contain an introduction to the necessary commutative algebra, and an introduction to the basic concepts of differential manifolds and algebraic varieties. The second week will introduce affine and projective varieties and their morphisms. The last week wil introduce various geometric phenomena over non-singular varieties, and will give a rapid view of the basics of algebraic curves.
References: The commutative algebraic background can be found in standard textbooks such as Atiyah-Macdonald ‘Commutative Algebra’. The bulk of the course will follow Chapter I of Hartshorne ‘Algebraic Geometry’. Participants can begin a self-study of the above material as a preparation for the school, and solve exercises.
Week I | ||||||
25-VI-18 | 26-VI-18 | 27-VI-18 | 28-VI-18 | 29-VI-18 | 30-VI-18 | |
9:30-11:00 | NN(1) | NN(2) | NN(3) | NN(4) | NN(5) | NN(6) |
11:30-13:00 | SMB(1) | SMB(2) | SMB(3) | SMB(4) | SMB(5) | SMB(6) |
14:30-15:30 | NN(t) | NN(t) | NN(t) | NN(t) | NN(t) | — |
16:00-17:00 | SMB(t) | SMB(t) | SMB(t) | SMB(t) | SMB(t) | — |
Week II | ||||||
02-VII-18 | 03-VII-18 | 04-VII-18 | 05-VII-18 | 06-VII-18 | 07-VII-18 | |
09:30-11:00 | SG(1) | SG(2) | SG(3) | SG(4) | SG(5) | — |
11:30-13:00 | UC(1) | UC(2) | UC(3) | UC(4) | UC(5) | – |
14:30-15:30 | SG(t) | SG(t) | SG(t) | SG(t) | SG(t) | — |
16:00-17:00 | UC(t) | UC(t) | UC(t) | UC(t) | UC(t) | — |
Week III | ||||||
09-VII-18 | 10-VII-18 | 11-VII-18 | 12-VII-18 | 13-VII-18 | 14-VII-18 | |
09:30-11:00 | AH(1) | AH(2) | AH(3) | AH(4) | AH(5) | AH(6) |
11:30-13:00 | VMM(1) | VMM(2) | VMM(3) | VMM(4) | VMM(5) | Closing |
14:30-15:30 | AH(t) | AH(t) | AH(t) | AH(t) | AH(t) | — |
16:00-17:00 | VMM(t) | VMM(t) | VMM(t) | VMM(t) | VMM(t) | — |
Speakers and topics: