AFS - I (2018) Speakers and Syllabus

Syllabus to be covered in terms of modules of 6 lectures each :

Name of the Speaker with affiliation, who will cover each module of 6 lectures

No. of Lectures

Detailed Syllabus

Dr. Parvati Shastri (PS) (Mumbai University)

6

Group Action, Cayley’s Theorem, Class Equation, Simple Group, Examples : Icosahedral group, Sylow Theorems and its applications, Free group, Generators and Relation

Dr Santosha K Pattanayak (IIT Kanpur) (SP)

6

Bilinear forms, Symmetric forms : orthogonality, , orthogonal projection, Hermitian Forms, Spectral theorem for Hermitian and Normal operators, Conics and Quadric

Dr Sachin Sharma (IIT Kanpur) (SS)

6

The Classical Linear Groups, Special Unitary Group SU(2) and its orthogaonal representation.SL(2,R), One-parameter subgroups, Lie Algebra, Simple Group

Dr Preena Samuel (IIT Kanpur) (PRS)

6

Group Representations, Group Invariant forms and Unitary Representations, Compact groups, Invariant Subspaces and Irreducible representations, Characters, Permutation Representations and regular representation, Schur’s Lemma and Proof of orthogonalty relations, Representations of the Group SU(2)

Dr Sameer Chavan (IIT Kanpur) (SC)

6

Goursat’S Theorem, Local existence of primitives, Cauchy’s Theorem on Disc, Cauchy’s integral formulas, Liouville’s theorem, Fundamental Theorem of Algebra, Identity Theorem

Dr Parasar Mohanty (IIT Kanpur) (PM)

6

Morera’s Theorem,, Sequences of holomorphic functions, Schwarz reflection principle, Runge’s approximation theorem, Zeros and Poles, Residue Formula

Dr Saurabh Shrivastava (IISER Bhopal) (SKS)

6

Singularities and Meroporhic functions,The argument principle, Rouche’s theorem, Open mapping theorem, Maximum modulus principle, The complex logarithm, Fourier Series and Harmonic Functions.

Dr Rama Rawat (IIT Kanpur) (RR)

 

6

Fourier Transform, Class of Holomorphic functions on strip with moderate decay, Paley-Wiener Theorem

Dr Anant Shastri (IIT Bombay) (AS)

6

Metric Spaces, Open and Closed sets, Convergence, Completeness, Baire’s Theorem, Lebesgue Lemma, Continuous mappings, Space of Continuous Functions, Topological Spaces, Basis of a topology, Sub-basis of a topology, Weak Topologies

Dr Ashish Mandal (IIT Kanpur) (AM)

6

Compact Spaces, Product of Spaces, Tychonoff's theorem, locally compact spaces, Compactness for Metric Spaces, Ascoli's theorem, Hausdorff Spaces, Completely Regular Spaces and Normal Spaces, Urysohn's Lemma, Tietze Extension theorem

Dr Abhijit Pal (IIT Kanpur) (AP)

6

Urysohn Imbedding Theorem, Stone-Cech Compactification, Connected Spaces, Components of a space, totally disconnected spaces, Locally connected Spaces, Weierstrass Approximation Theorem, Stone Weierstrass Theorem

Dr Ajay Singh Thakur (IIT Kanpur) (AT)

6

Locally Compact Hausdorff Spaces, Extended Stone-Weierstrass Theorem, Constructing Mobius Strips, Torus and higher genus surfaces, Cone construction, Glueing lemma, Quotient space, Topological Group, Orbit Space.

 

References:

1. Algebra, Michael Artin

2. Complex Analysis, Stein E.M and Rami Shakarchi

3. Introduction to Topology and Modern Analysis, G.F.Simmons

4. Basic Topology, M.A. Armstrong

 

Names of the tutors / course associate with their affiliation and status:

1. Rajeev Gupta (Post Doc IIT Kanpur)

2. Sailesh Trivedi (Post Doc, IIT Kanpur)

3. Few more postdocs from outside Kanpur

 

Tentative time-table:

Day

Date

Lecture 1

(9.30–11.00)

Tea

(11.00
TO
11.30)

Lecture 2

(11.30–1.00)

Lunch

(1.00–2.00)

Tutorial 1

(2.30–3.30)

Tea

(3.30-4.00)

Tutorial 2

(4.00-5.00)

Tea
&
Snacks

5.00
TO
5.30

 

 

speaker

 

 

 

 

 

 

 

speaker

 

 

 

 

 

 

 

 speaker /
tutor

 

 

 

 

 

 

 

speaker/
tutor

 

 

 

 

 

 

 

Mon

7.05.18

AS

SC

Topology

Topology

Tues

08.05.18

SC

PS

Complex

Complex

Wed

09.05.18

PS

AS

Algebra

Algebra

Thu

10.05.18

AS

SC

Topology

Topology

Fri

11.05.18

SC

PS

Complex

Complex

Sat

12.05.18

PS

AS

Algebra

Algebra

Sunday : Off

Mon

14.05.18

PM

 

 

 

 

 

 

SP

 

 

 

 

 

 

Complex

 

 

 

 

 

 

Complex

 

 

 

 

 

 

Tue

15.05.18

SP

AM

Algebra

Algebra

Wed

16.05.18

AM

PM

Topology

Topology

Thu

17.05.18

PM

SP

Complex

Complex

Fri

18.05.18

SP

AM

Algebra

Algebra

Sat

19.05.18

AM

PM

Topology

Topology

Sunday : Off

Mon

21.05.18

SKS

 

 

 

 

 

 

SS

 

 

 

 

 

 

Complex

 

 

 

 

 

 

Complex

 

 

 

 

 

 

Tue

22.05.18

SS

AP

Algebra

Algebra

Wed

23.05.18

AP

SKS

Topology

Topology

Thu

24.05.18

SKS

SS

Complex

Complex

Fri

25.05.18

SS

AP

Algebra

Algebra

Sat

26.05.18

AP

SKS

Topology

Topology

Sunday : Off

Mon

28.05.18

PRS

 

 

 

 

 

 

AT

 

 

 

 

 

 

Algebra

 

 

 

 

 

 

Algebra

 

 

 

 

 

 

Tue

29.05.18

AT

RR

Topology

Topology

Wed

30.05.18

RR

PRS

Complex

Complex

Thu

31.05.18

PRS

AT

Algebra

Algebra

Fri

01.06.18

AT

RR

Topology

Topology

Sat

02.06.18

RR

PRS

Complex

Complex