IST - Applications of Linear Algebra in Machine Learning and Data Science (2026)
Speakers and Syllabus
|
Name of the Speaker with affiliation |
No. of Lectures |
Detailed Syllabus |
|
Prof. K. N. Raghavan |
6 |
1.Foundations of Linear Algebra for Data Science (Linear Algebra Recap) ◦ Vector spaces, subspaces, and linear transformations. |
| Prof. Neeldhara Misra Associate Professor, IIT Gandhinagar |
12 |
2.Dimensionality Reduction and Linear Models Dimensionality Reduction & Feature Extraction:
Linear Models for Machine Learning:
|
| Prof. Palash Dey Assistant Professor at IIT Kharagpur |
9 |
3.Advanced Topics and Emerging Applications
|
| Prof. M. Rajesh Kannan Associate Professor, IIT Hyderabad |
9 |
4.Spectral Methods in ML ◦Graphs, Adjacency matrices, and the Graph Laplacian (standard and normalized).
|
Course Associates:
- Pragya Arora (IIT Gandhinagar)
- Paras Arya (IIT Gandhinagar)
- Saraswati Nanoti (IIT Gandhinagar)
- Abhay Jayarajan (IIT Hyderabad)
- Rahul Roy (IIT Hyderabad).
- Mr. Mohana Rahul, IIT Hyderabad
Course Associates will assist with tutorial sessions and hands-on labs.
References
1. Gilbert Strang: Linear Algebra and Learning from Data, Wellesley-Cambridge Press, 2019.
2. Gene H. Golub and Charles F. Van Loan: Matrix Computations, 4th Edition, Johns Hopkins University Press.
3. Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning, Cambridge University Press, 2020.
4. Trevor Hastie, Robert Tibshirani, and Jerome Friedman: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition, Springer.
5. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep Learning, MIT Press.
6. Ulrike von Luxburg: A Tutorial on Spectral Clustering, Statistics and Computing, Vol. 17, No. 4, 2007.
7. Dan Spielman, Lecture notes on ”Spectral and Algebraic Graph Theory” (2025).
8. Bojan Mohar, Some applications of Laplace eigenvalues of graphs, Graph symmetry (Montreal, PQ, 1996), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci.,497, 225–275, Kluwer Acad. Publ., Dordrecht, 1997.
Time Table
Week -One
|
Date |
9.30-11.00 |
11.00-11.30 |
11.30-1.00 |
1.00-2.30 |
2.30-3.30 |
3.30-4.00 |
4.00-5.00 |
|
18/05(Mon) |
KNR |
T |
NM |
L |
KNR,PRA,PA |
T |
NM,SN,AJ |
|
19/05(Tue) |
KNR |
T |
NM |
L |
KNR,PRA,PA |
T |
NM,SN,AJ |
|
20/05(Wed) |
KNR |
T |
NM |
L |
KNR,PRA,PA |
T |
NM,SN,AJ |
|
21/05(Thu) |
KNR |
T |
NM |
L |
KNR,PRA,PA |
T |
NM,SN,AJ |
|
22/05(Fri) |
NM |
T |
NM |
L |
NM,PRA,PA |
T |
NM,SN,AJ |
|
23/05(Sat) |
NM |
T |
NM |
L |
NM,PRA,PA |
T |
NM,SN,AJ |
Week-Two
|
Date |
9.30-11.00 |
11.00-11.30 |
11.30-1.00 |
1.00-2.30 |
2.30-3.30 |
3.30-4.00 |
4.00-5.00 |
|
25/05(Mon) |
PD |
T |
RK |
L |
PD,PRA,PA |
T |
RK,RR,MR |
|
26/05(Tue) |
PD |
T |
RK |
L |
PD,PRA,PA |
T |
RK,RR,MR |
|
27/05(Wed) |
PD |
T |
RK |
L |
PD,PRA,PA |
T |
RK,RR,MR |
|
28/05(Thu) |
PD |
T |
RK |
L |
PD,PRA,PA |
T |
RK,RR,MR |
|
29/05(Fri) |
PD |
T |
RK |
L |
PD,PRA,PA |
T |
RK,RR,MR |
|
30/05(Sat) |
PD |
T |
RK |
L |
PD,PRA,PA |
T |
RK,RR,MR |
- S1 : Section 1 (Foundations of Linear Algebra : Prof. K. N. Raghavan)
- S2 : Section 2 (Dimensionality Reduction and Linear Models : Prof. Neeldhara Misra)
- S3 : Section 3 (Advanced Topics : Prof. Palash Dey)
- S4 : Section 4 (Spectral and Clustering Methods : Prof. M. Rajesh Kannan )
- Lec : Lecture Session (1.5 hours)
- Tut: Tutorial/Lab Session (1 hour)
- T : Tea
- L : Lunch
- KNR : Prof. K. N. Raghavan
- NM : Prof. Neeldhara Misra
- PD : Prof. Palash Dey
- RK : Prof. M. Rajesh Kannan
- PRA: Pragya Arora
- PA : Paras Arya
- SN : Saraswati Nanoti
- AJ : Abhay Jayarajan
- RR : Rahul Roy
- MR : Mohanarahul