AIS - Application of Statistical Learning and Stochastic Processes in Physical Domain

Speakers and Syllabus


Name of the Speaker with affiliation No. of Lectures Detailed Syllabus
Rajendra K. Ray, IIT Mandi 3L + 2T Basics of Probability: Introduction to random variables; Conditional probability and Bayes’ theorem; Common distributions: Bernoulli, Binomial, Poisson, Normal; Moments and their interpretations like expectation, variance, moments, etc.; Different types of convergence: almost sure, in probability, in distribution; Central Limit Theorem and Law of Large Numbers.
Tanmay Kayal, IIT Mandi 3L + 2T
Debasis Kundu, IIT Kanpur 6L +4T Introduction to Stochastic Processes: Definition and classification; Introduction to Markov Processes; Classification of Markov Processes; Discrete-Time Markov Chains; Continuous-Time Markov Chains.
Tanmay Sen, ISI Kolkata 6L + 4T Statistical Learning: Population; Sample; Point estimation; Interval estimation; Hypothesis testing (Parametric and Non-parametric); Bias-variance tradeoff; Model selection; Regularization techniques (Lasso, Ridge); Overview of common algorithms (Linear regression, Decision trees).
Subhasis    Chaudhuri,    IIT Bombay 6L + 4T Introduction to Machine Learning (ML) and Deep Learning (DL): Machine Learning Overview; Types of ML (Supervised, Unsupervised, Reinforcement Learning); Common Algorithms (Linear Regression, Decision Trees, KNN, SVM, etc.); Model Evaluation (Cross-validation, Overfitting, Underfitting); Introduction to Deep Learning; Neural Networks and Perceptrons; Deep Learning Architectures (CNNs, RNNs, GANs); Backpropagation and Gradient Descent; Applications of ML and DL (Image Recognition, Natural Language Processing, Autonomous Systems, etc.).
Soumyendu    Raha,    IISc Bangalore 6L + 4T Markov Processes and Physical Systems: Introduction Stochastic differential equations (e.g., Ito Calculus, Fokker-Planck equations, etc.); Applications of Markov processes in physical systems.
Soumyendu    Raha,    IISc Bangalore 3L+2T Introduction to Physics-Informed Neural Networks (PINNs): Overview of PINNs:Recent advancement in PINN algorithms; Applications of PINN in solving physical problems.
Rajendra K. Ray, IIT Mandi 3L+2T

References:

    1. S. Ross. A First Course in Probability, Pearson.
    2. J. Medhi. Stochastic Processes, New Age.
    3. G. Casella and R. L. Berger. Statistical Inference, Cengage.
    4. B. Oksendal. Stochastic Differential Equations: An Introduction with Applications, Springer 2003.
    5. M. Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

(Lecture notes from the speakers will be provided, if available)

Tutorial Assistants:

S.No.

Name

Affiliation

1

ArindamSarkar

IITMandi

2

BiswanathBarman

IITMandi

3

ShrutiNaryal

IITMandi

4

PawanKumar Patel

IITMandi

 

 

 


Time Table

  

Day

Date

Lecture1

(9.30–11.00)

Tea

(11.05 – 11.25)

Lecture2

(11.30–1.00)

Lunch

(1.05-2.25)

Tutorial
(2.30–3.30)

Tea

(3.35-3.55)

Tutorial
(4.00-5.00)

 

 

(Name of the

speaker)

 

(Name of the

speaker)

 

(Name of the speaker
+tutors)

 

(Name of the speaker+
tutors)

Mon

01/06/2026

RR

 

RR

 

RR,TK,PP

 

RR,TK,PP

Tues

02/06/2026

TK

 

TK

 

RR,TK,PP

 

RR,TK,PP

Wed

03/06/2026

TS

 

TS

 

TS,TK,PP

 

TS,TK,PP

Thu

04/06/2026

TS

 

TS

 

TS,TK,BB

 

TS,TK,BB

 Fri 05/06/2026  SC    SC    SC, TK, SN    SC, RR, SN
 Sat 06/06/2026  SC    SC    SC, TK, SN    SC, RR, SN
 SUNDAY : OFF        

Mon

08/06/2026  DK    DK    DK,    MK, SN    DK, MK, SN
Tues 09/06/2026  DK    DK    TK, AS, BB    TK, AS, BB
 Wed 10/06/2026  SR    SR    SR, RR, AS    SR, RR, AS
 Thu 11/06/2026  SR    SR    SR, RR, AS    SR, RR, AS
 Fri 12/06/2026  SR    SR    SR, RR, SN    SR, RR, BB
 Sat 13/06/2026  SR    SR    RR, TK, SN    RR, TK, BB

SC:Subhasis Chaudhuri
DK: Debasis Kundu
SR: Soumyendu Raha
TS: Tanmay Sen
RR:RajendraK.Ray
TK: Tanmay Kayal
AS: Arindam Sarkar
BB:Biswanath Barman
SN: Shruti Naryal
PP:Pawan Kumar Patel

 

 

 

 

File Attachments: