AIS - Cohomology of Commutative Algebras (2024)
Speakers and Syllabus
| Speaker and affiliation | Number of Lectures | Detailed Syllabus | 
| Sukhendu Mehrotra CMI | 4 | Kähler derivations and differentials, the fun- damental exact sequence, Regular rings and complete intersection rings, Properties of maps: Smoothness and locally complete in- tersection; only for maps essentially of finite type. | 
| Anjan Gupta IISER Bhopal | 4 | Commutative differential graded algebras and modules, Koszul complex, as a DG al- gebra, Tate resolutions and semi-free resolu- tions, Characterising complete intersections rings in terms of Koszul homology; the re- sults of Tate, Assmus, Gulliksen, Wiebe. | 
| ManojCMI Kummini | 4 | Gorenstein rings and Koszul homology, the result of Avramov, and Golod, Minimality of acyclic closures, the result of Gulliksen and Schöller, Obstructions to multiplicative struc- tures on free resolutions. | 
| Anand Sawant TIFR Mumbai | 4 | Simplicial algebraic geometry | 
| Benjamin Briggs Imperial College London, UK. and Srikanth Iyengar University of Utah USA. | 4 + 4 | Cotangent complex of a map and basic prop- erties. This is the one place we need simplicial methods. André-Quillen functors, the Jacobi– Zariski exact sequence, and links to smooth- ness and locally complete intersection prop- erty. Hochschild homology and cohomology, the Hochschild-Kostant-Rosenberg Theorem, and rigidity properties. Hochschild and its re- lation to the cotangent complex; the Atiyah character. Ext as a graded Hopf algebra and the homotopy Lie algebra of a map. Rad- ical of the homotopy Lie algebra, and the Avramov-Halperin result. Relating the cotan- gent complex to its dg avatar. Rigidity of the cotangent complex, the Quillen conjectures, and future directions. | 
References
- [AG71] L. L. Avramov and E. S. Golod. The homology of algebra of the Koszul complex of a local Gorenstein ring. Mat. Zametki, 9:53–58, 1971.
- [And74] M. André. Homologie des algèbres commutatives, volume Band 206 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin-New York, 1974.
- [Avr98] L. L. Avramov. Infinite free resolutions. In J. Elías, J. M. Giral, R. M. Miró-Roig, and S. Zarzuela, editors, Six lectures on commutative algebra, Papers from the Summer School (Ballaterra, 1996), Mod. Birkhäuser Class., pages 1–118.Birkhäuser/Springer,Basel, 1998.
- [BI23] B. Briggs and S. Iyengar. Rigidity properties of the cotangent complex. J. Amer. Math. Soc., 36(1):291–310, 2023. 1
- [GL69] T. H. Gulliksen and G. Levin. Homology of local rings. Number 20 in Queen’s Papers in Pure and Applied Mathematics. Queen’s University, Kingston, Ont., 1969.
- [Gul68] T. H. Gulliksen. A proof of the existence of minimal R-algebra resolutions. Acta Math., 120:53–58, 1968. [MR10] J. Majadas and A. G. Rodicio. Smoothness, regularity and complete intersection, volume 373 of London Math. Soc. Lecture Note Ser. Cambridge University Press, Cambridge, 2010.
- [Qui70] D. Quillen. On the (co-) homology of commutative rings. In A. Heller, editor, Applications of categorical alge- bra (New York, 1968), volume XVII of Proc. Sympos. Pure Math., pages 65–87. Amer. Math. Soc., Providence, R.I., 1970.
- [Sch67] C. Schoeller. Homologie des anneaux locaux noethériens. C. R. Acad. Sci. Paris Sér. A-B, 265:A768–A771, 1967.
- [Tat57] J. Tate. Homology of Noetherian rings and local rings. Illinois J. Math., 1:14–27, 1957. [Wie69] H. Wiebe. Über homologische Invarianten lokaler Ringe. Math. Ann., 179:257–274, 1969.
Time Table
| Day | Date | Lecture 1 | Lecture 2 | Tutorial | Tutorial | ||||
| 9.30–11.00 | T | 11.30–1.00 | L | 2.30–3.30 |   | 4.00-5.00 | S | ||
| Mon | 2/12/2024 | MK | AG | MK, T1, T2 | AG, T1, T3 | ||||
| Tue | 3/12/2024 | AG | SM | AG, T2, T3 | SM, T1, T2 | ||||
| Wed | 4/12/2024 | SM | MK | SM, T1, T3 | MK, T2, T3 | ||||
| Thu | 5/12/2024 | MK | AG | MK, T1, T2 | AG, T1, T3 | ||||
| Fri | 6/12/2024 | AG | SM | AG, T2, T3 | SM, T1, T2 | ||||
| Sat | 7/12/2024 | SM | MK | SM, T1, T3 | MK, T2, T3 | ||||
| Mon | 9/12/2024 | AS | BB | AS, T1, T2 | BB, T1, T3 | ||||
| Tue | 10/12/2024 | SI | AS | SI, T2, T3 | AS, T1, T2 | ||||
| Wed | 11/12/2024 | BB | AS | BB, T1, T3 | AS, T2, T3 | ||||
| Thu | 12/12/2024 | AS | SI | AS, T1, T2 | SI, T1, T3 | ||||
| Fri | 13/12/2024 | SI | BB | SI, T2, T3 | BB, T1, T2 | ||||
| Sat | 14/12/2024 | BB | SI | BB, T1, T3 | SI, T2, T3 | 
BB : Benjamin Briggs
AG : Anjan Gupta
SI : Srikanth Iyengar
MK: Manoj Kummini
SM :Sukhendu Mehrotra
AS : Anand Sawant