NCMW - Elliptic Curves (2023)
Speakers and Syllabus
Syllabus:
Name of the Speaker with affiliation | Number of Lectures | Syllabus/ Topics |
Dr. Sarbeswar Pal IISER-TVM | Lectures 4 hrs 30 mins Tutorial - 1 hr |
Affine and Projective varieties : Rational Maps between varieties Algebraic Curves : Curves, Maps between curves, Divisors, Di↵erentials and Riemann Roch Theorem |
R. Thangadurai Professor HRI, Prayagraj | Lectures - 7 hrs Tutorial - 1 hr |
The Geometry of Elliptic Curves : Elliptic Curves : Weierstrass Equations, The Group Law, Isogenies, Discriminant and multiplicative reduction, The Tate Module, The Weil Pairing The Endomorphism Ring The Automorphism Group, Formal Groups, Frey Curves |
Neil Dummigan Professor Sheffield University, U.K. | Lectures -6 hrs Tutorial - 2 hrs |
Elliptic Curves over finite fields : Rational Points, The Weil Conjectures, The Endomorphism Ring, Hasse Invariant calculations. |
Dr. Jayanta ManoharmayumUniversity, U.K. Sheffield | Lectures - 6 hrs Tutorial - 1 hr 2 |
Elliptic Curves over C : The isomorphism E/C ⇠ = C⇤ /q Z, Tate Curve, Elliptic Integrals, Construction of Elliptic Functions Analytic and Algebraic Maps, Uniformization, The Lefschetz Principle Elliptic Curves over |
Ram Murty Professor Queen’s University, Canada. | Lectures - 6 hrs Tutorial - 1 hr |
Global Fields: The Weak Mordell-Weil Theorem, The Kummer Pairing via Cohomology, The Descent Procedure, The Mordell-Weil Theorem over Q, Heights, Torsion Points, The Minimal Discriminant, The Rank of an Elliptic Curve, Szpiro Conjecture and ABC. |
Dr. Narasimha Kumar, IIT Hyderabad. | Lectures - 5 hrs Tutorial - 1 hr |
Integral Points on Elliptic Curves - I: Diophantine Approximation, Distance Functions, Siegel Theorem, |
Dr. Srilakshmi Krishnamoorthy IISER-TVM. | Lectures - 1 hr 30 mins Tutorial - 1 hr |
Integral Points on Elliptic Curves - II: Shafarevich Theorem, Roth Theorem. |
Dr. Shaunak Deo IISc, Bangalore. | Lectures - 6 hrs Tutorial - 1 hr | Computing the Mordell-Weil Group: Examples, Twisting-General Theory Homogeneous Spaces, The Selmer and Shafarevich-Tate Groups Twisting-Elliptic Curves. |
Kalyan Chakraborty Professor KSOM, Calicut. | Lectures - 6 hrs Tutorial - 1 hr 3 | Algorithmic Aspects of Elliptic Curves: Elliptic Curve Factorization Algorithm (by Lenstra), Elliptic Curve Cryptography, Pairing-Based Cryptography, Applications to Cryptography, Double-and-Add Algorithms, Counting the Number of Points in E(Fq ), Solving the ECDLP: The General Case and special case, Computing the Weil Pairing, The Tate-Lichtenbaum Pairing. |
Lawrence Washington Professor University of Maryland, USA. | Lectures - 6 hrs | Introduction to Iwasawa Theory: Basic facts, The structure of ⇤-modules, Iwasawa’s theorem, consequences, Logarithmic derivatives, Local units modulo cyclotomic units. |
Sujatha Ramdorai Professor University of British Columbia, Canada | Lectures - 6 hrs Tutorial - 1 hr | Iwasawa modules for elliptic curves: Bloch–Kato Selmer groups, Selmer structures,The extension F1 /F , Selmer groups over F1 , Control theorems, Construction of the p-adic L-functions, Some p-adic Measure Theory, Formulation of the Main Conjecture. |
Dr. Bharathwaj Palvannan IISc, Bangalore. | Lectures - 6 hrs Tutorial - 1 hr | p-adic L-functions of elliptic curves : Periods, modular symbols, measures, algebraicity and integrality of L-values. |
Time Table
Week 1
Time/ Day | 03/04 | 04/04 | 05/04 | 06/04 | 07/04 | 08/04 |
09:30- 11:00 | SP | SP | RT | RT | LW | LW |
11:00- 11:30 | Tea | Tea | Tea | Tea | Tea | Tea |
11:30- 13:00 | RT | RT | JM | JM | JM | JM |
13:00- 14:30 | Lunch | Lunch | Lunch | Lunch | Lunch | Lunch |
14:30- 16:00 | SP | ND | ND | ND | ND | NK |
16:00- 16:30 | Tea | Tea | Tea | Tea | Tea | Tea |
16:40- 17:40 | RT+SKP +SB | SP+SKP +SB | ND+SKP +SB | JM+SKP +SB | ND+SKP +SB | NK+SKP +SB |
18:00- 19:00 | LW | LW | LW | RT | NK | NK |
Week 2
Time/ Day | 10/04 | 11/04 | 12/04 | 13/04 | 14/04 | 15/04 |
09:00- 10:30 | SR | SR | SR | SK | RM | RM |
10:30- 11:00 | Tea | Tea | Tea | Tea | Tea | Tea |
11:00- 12:30 | SR | SD | SD | RM | SD | SD |
12:30- 14:00 | Lunch | Lunch | Lunch | Lunch | Lunch | Lunch |
14:00- 15:30 | NK | BP | BP | BP | BP | RM |
15:30- 16:00 | Tea | Tea | Tea | Tea | Tea | Tea |
16:00- 17:00 | KC | KC | KC | KC | KC | KC |
17:10- 18:10 | KC+TD +RV | BP+TD +RV | SD+TD +RV | RM+TD +RV | SK+TD +RV | SR+TD +RV |
Full forms for the abbreviations of Speakers and Tutors
speakers:
- SP: Dr. Sarbeswar Pal
- RT: Prof. Ravindranathan Thangadurai
- ND: Prof. Neil Dummigan
- JM: Dr. Jayanta Manoharmayum
- RM: Prof. Ram Murty
- SK: Dr. Srilakshmi Krishnamoorthy
- SD: Dr. Shaunak Deo
- KC: Prof. Kalyan Chakraborty
- NK : Dr. Narasimha Kumar
- LW: Prof. Lawrence Washington
- SR: Prof. Sujatha Ramdorai
- BP: Dr. Bharathwaj Palvannan
Tutors :
- SKP: Mr. Sunil Pasupulati (Final year PhD student at IISER-TVM)
- SZ: Dr. Ravitheja Vangala (Postdoctoral fellow, IISc, Bangalore)
- SB: Dr. Subham Bhakta (Visitor, IISER-TVM)
- TD: Dr. Tarun Dalal (Postdoctoral Fellow, HRI, Allahabad).
References
- Joseph H. Silverman, The arithmetic of elliptic curves, second ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009.
- J. Coates and R. Sujatha, Cyclotomic fields and zeta values, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006.
- Lawrence C. Washington, Introduction to cyclotomic fields, second ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997.
- Lawrence C. Washington, Elliptic curves, second ed., Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2008, Number theory and cryptography.
- Ralph Greenberg, Introduction to Iwasawa theory for elliptic curves, Arithmetic algebraic geometry (Park City, UT, 1999), IAS/Park City Math. Ser., vol. 9, Amer. Math. Soc.,Providence, RI, 2001, pp. 407–464.