NCMW - Representations of p-adic groups (2022)

Speakers and Syllabus


Syllabus to be covered in terms of modules of 6 lectures each :

 

Name of the Speakers with their affiliation.

No. of Lectures

Detailed Syllabus

CG Venketasubramanian   Bernstein-Zelevinsky theory including combinatorial classification of irreducible admissible representations of p-adic general linear groups in terms of supercuspidal representations and multisegments, the work of Lapid and Minguez on ladder representations.
Tanmay Deshpande   Realization of various supercuspidal representations of p-adic
reductive groups in the cohomology of affine Deligne-Lusztig varieties.
Manish Mishra   Compact induction, J.-K. Yu’s construction of supercuspidal repre-
sentations, Bushnell-Kutzko theory of types and covers.
Santosh Nadimpalli   Construction and analysis of representations of finite groups of
Lie type, Deligne-Lusztig theory.
Ravi Raghunathan   Modular and automorphic forms, connection between global and
local representation theory, L-functions and their integral representations.
Sandeep Varma   The Bruhat-Tits building, parahohoric groups, Moy-Prasad filtrations.

References:

  • Bump, Daniel Automorphic forms and representations. Cambridge Studies in Advanced Mathematics, 55. Cambridge University Press, Cambridge, 1997. xiv+574 pp.
  • Bushnell, Colin J.; Kutzko, Philip C. The admissible dual of GL(N) via compact open subgroups. Annals of Mathematics Studies, 129. Princeton University Press, Princeton, NJ, 1993. xii+313 pp.
  • Ottawa lectures on admissible representations of reductive p-adic groups. Lectures from the Field Institute Workshops held at the University of Ottawa, Ottawa, ON, May 2004 and January 2007. Edited by Cli↵ton Cunningham and Monica Nevins. Fields Institute Monographs, 26. American Mathematical Society.
  • Digne, Francois; Michel, Jean. Representations of Finite Groups of Lie Type. Cam-bridge University Press.

 References (Research articles).

  • Bernstein, I. N. and Zelevinsky, A.V. Representations of the group GL(n, F), where F is a local non-Archimedean field. Uspehi Mat. Nauk 31 (1976). Available at: http://www.math.tau.ac.il/⇠bernstei/Publication list/Publication list.html
  • Bruhat, F; Tits, J. Groupes rductifs sur un corps local. Inst. Hautes Etudes Sci.  ́ Publ. Math. No. 41 (1972), 5-251-.
  • Bruhat, F; Tits, J. Groupes rductifs sur un corps local. II Sch ́emas en groupes.Existence d’une donn ́ee radicielle valu ́ee. Inst. Hautes Etudes Sci. Publ. Math.  ́ No. 60 (1984), 197-376.
  • Lapid, Erez; Mnguez, Alberto On a determinantal formula of Tadi ́c. Amer. J. Math 136 (2014), no. 1, 111-142.
  • Moy, Allen; Prasad, Gopal. Unrefined minimal K-types for p-adic groups. Invent. Math. 116 (1994), no. 1-3, 393-408.
  • Bushnell, Colin J.; Kutzko, Philip C. Smooth representations of reductive p-adic groups: structure theory via types. Proc. London Math. Soc. (3) 77 (1998), no. 3, 582-634.
  • Jacquet, H.; Piatetskii-Shapiro, I. I.; Shalika, J. A. Rankin-Selberg convolutions. Amer. J. Math. 105 (1983), no. 2, 367-464.
  • Gelbart, Stephen S. Automorphic forms on adle groups. Annals of Mathematics Studies, No. 83. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975. x+267 pp.

Tentative Schedule

  • Course 1 - Representations of Finite Groups of Lie Type: by Santosh Nadimpalli (SN).
  • Course 2 - Representations of General Linear Groups over p-adic Fields: by CG Venketasubramanian (CGV).
  • Introductory lectures; and Course 3 - Bruhat-Tits theory: by Sandeep Varma (SV).
  • Course 4 - Types and Construction of Supercuspidal Representations: by Manish Mishra (MM).
  • Course 5 - Realizing representations of p-adic groups using affine Deligne-Lusztig varieties: by Tanmay Deshpande (TD).
  • Course 6 - Automorphic Representations and L-functions (by RR).

Time Table

 Week 1

Day Date 9:30-10:45 11:15-12:30 14:15-15:30 16:00-17:00
(Tutorial)
M May 23 SV
(Introductory)
SN SV
(Introductory)
Tutorial (Course 1)
T May 24 SN CGV SV Tutorial (Course 2)
W May 25 SN CGV SV Tutorial (Course 3)
Th May 26 SN CGV SV Tutorial (Course 1)
F May 27 SN CGV SV Tutorial (Course 2)
S May 28 SN CGV SV Tutorial (Course 3)

 

 Week 2

Day Date 9:30-10:45 11:15-12:30 14:15-15:30 16:00-17:00
(Tutorial)
M May 30 MM TD RR Tutorial (Course 4)
T May 31 MM TD RR Tutorial (Course 5)
W June 1 MM RR TD Tutorial (Course 6)
Th June 2 MM TD RR Tutorial (Course 4)
F June 3 MM TD RR Tutorial (Course 5)
S June 4 MM RR TD Tutorial (Course 6)

 10:45 - 11:15 and 15:30 - 16:00 will be tea breaks, while 12:30 - 14:15 will be a lunch break.

File Attachments: