NCMW - Control Theory for Differential Equations (2022)

Speakers and Syllabus


 Name of the possible Speakers with affiliations

  1. Dr Saugata Bandyopadhyay, IISER Kolkata
  2. Dr Rajib Dutta, IISER Kolkata
  3. Dr. Shirshendu Chowdhury, IISER Kolkata
  4. Prof. Mythily Ramaswamy , ICTS-TIFR, Bangalore
  5. Dr. Debanjana Mitra, IIT Bombay.
  6. Dr. Debayan Maity , TIFR-CAM, Bangalore

Possible Tutorial Assistants :

S. No.

Name

Affiliation

1

Samprita Das Roy

IISER Kolkata

2

Subrata Mazumdar

IISER Kolkata

3

Jiten Kumbhakar

IISER Kolkata

4

Wasim Akram

IIT Bombay

5

Sakil Ahamed

IIT Bombay

6

Manish Kumar

IISER Kolkata

 

Syllabus:

First week: (Existence and Stability of ODE in R^N)

  1. Existence and stability for Linear ODE:Linear ODE, Exponential of Matrix, Global existence Theorem for linear ODE,(from [7], [8] )Linear stability (eigenvalue criteria from [9]),
  2. Existence and stability for Non-Linear ODE:Nonlinear ODE, Picard iteration, existence uniqueness theorem ([7] , [8]), stability of nonlinear ODE, Lyapunov’s Method([7]), LaSalle's invariance principle([4]

    Second week: (Controllability and Stabilizability in R^N for linear and nonlinear ODE)

  3.  Controllability and Stabilizability for Linear ODE:Finite dimensional linear system, Various concepts of controllability. Reachable states. Kalman rank condition, Popov-Belevitch-Hautus test. The moment method and HUM control. Concepts of observability, duality between controllability and observability, cost of the control. ( [1],[2],[5],[6],[9]). Stabilizability for linear system, Popov-Belevitch-Hautus test, Feedback stabilization, pole shifting, Gramian, Complete stabilization, relation between null controllability and stabilizability ([2], [5], [9]).
  4. Controllability and Stabilizability for Non- Linear ODE:Controllability for nonlinear systems in finite dimension: Fixed point method, Return method,Quasi-static deformation method and Power series expansion method, Iterated Lie bracket stechnique (Lie algebra Rank condition) from [2] and phantom tracking method (from [3] as application of Lyapunov method and Lasalle's invariance principle).

 

References:

  1. Franck Boyer. Controllability of linear parabolic equations and systems, 2020. Lecture Notes, https://hal.archives-ouvertes.fr/hal-02470625.
  2. Jean-Michel Coron, Control and nonlinearity. Mathematical Surveys and Monographs, 136. American Mathematical Society, Providence, RI, 2007.
  3. Jean-Michel Coron, Phantom Tracking method, homogeneity and rapid stabilization. Math. Control Relat. Fields3(2013), no. 3,303-322.
  4. Jean-Michel Coron, Ivonne Rivas, Quadratic approximation and time-varying feedback laws. SIAM J. Control Optim.55 (2017), no. 6, 3726-3749.
  5. Hassan K. Khalil, Nonlinear systems. Macmillan Publishing Company, New York, 1992
  6. Weijiu Liu, Elementary Feedback Stabilization of the Linear Reaction-Convection-Diffusion Equation and the Wave Equation, Mathématiques & Applications (Berlin) [Mathematics & Applications], 66. Springer-Verlag, Berlin, 2010.
  7. Sorin Micu and Enrique Zuazua, An Introduction to the Controllability of Partial Differential Equations. Available at http://www.uam.es/personal_pdi/ciencias/ezuazua/informweb/argel.pdf.
  8. Lawrence Perko, Differential Equations and Dynamical Systems.Third edition. Texts in Applied Mathematics, 7.
  9. Springer-Verlag, New York, 2001.9. George Simmons, Differential Equations with Applications and Historical Notes. Third edition, Textbooks in Mathematics. CRC Press, Boca Raton, FL, 2017
  10. Jerzy Zabczyk, Mathematical control theory. An introduction. Modern Birkhäuser Classics. , Inc., Boton, MA, 1995.

 


Time Table

 

Date

Lecture 1

(9.30–11.00)

Tea

(11.00 –11.30)

Lecture 2

(11.30–1.00)

Lunch

(1.00–2.00)

Lecture 3

(2–3.30)

Tea

(3.30-4.00)

Tutorial/

Discussion

(4.00-5.30)

Snacks

5.30

1st week

 

 

 

 

T

 

 

E

 

 

A

 

 

 

 

L

 

U

 

N

 

C

 

H

 

 

 

T

 

 

E

 

 

A

(Speaker + two tutors)

 

 

 

S

 

N

 

A

 

C

 

K

 

S

28/11/2022

 

Saugata

Rajib

Shirshendu

Sagata+

Samprita+Subrata

29/11/2022

Saugata

Rajib

Shirshendu

Rajib+

Jiten+Wasim

30/11/2022

Saugata

Rajib

Shirshendu

Shirshendu

+Sakil+Manish

01/12/2022

Saugata

Rajib

Shirshendu

Saugata+

Samprita+Subrata

02/12/2022

Saugata

Rajib

Shirshendu

Rajib+ Jiten+Wasim

03/13/2022

Saugata

Rajib

Shirshendu

Shirshendu

+Sakil+Manish

2nd week

 

 

 

 

 

 

 

 

05/13/2022

Mythily

 

 

T

 

 

E

 

 

A

Debanjana

 

 

L

 

U

 

N

 

C

 

H

Debayan

 

 

T

 

 

E

 

 

A

Mythily+

Samprita+Subrata

 

S

 

N

 

A

 

C

 

K

 

S

06/12/2022

Mythily

Debanjana

Debayan

Debanjana+

+Jiten+Wasim

07/12/2022

Mythily

Debanjana

Debayan

Debayan+

+Sakil+Manish

08/12/2022

Mythily

Debanjana

Debayan

Mythily+

Samprita+Subrata

09/12/2022

Mythily

Debanjana

Debayan

Debanjana+

+Jiten+Wasim

10/12/2022

Mythily

Debanjana

Debayan

Debayan+

+Sakil+Manish

 

 

File Attachments: