IST - Complex Analysis from a geometric viewpoint (2022)

Speakers and Syllabus


Name of the Speaker with affiliation

No. of Hours

Topics

Dr. Narendra Singh Sijwali (NSS), Govt PG, College , Dwarahat &

Dr .Gopal Datt (GD), BBAU, Lucknow

(3 hrs & 3 hrs resp. )

Complex Function Theory I: Arithmetic of complex numbers, Exponential functions, Complex Differentiation, Holomorphic functions, The Exponential and complex trigonometric functions, Polynomials, Logarithmic function, Power series. Complex line integral. Cauchy’s theorem. General contour integration. Application of Cauchy’s formula: Zeros of a holomorphic function. Entire function, Liouville’s theorem.

 

Dr .Gopal Datt (GD), BBAU, Lucknow

 

 

6 hrs

Complex Function Theory II: Homotopy version of Cauchy’s theorem, Jordan curve theorem. Branches of logarithm on simply connected domains. Singularities, Laurant Series, Residue theorem, Argument principle, Open mapping theorem, Maximum modulus principle, Riouche’s theorem, Mittag-Leffer theorem, Little and Big Picard theorems.

Prof E K Narayanan (EKN)

IISc.

9 hrs

Several Complex Variables:Holomorphic functions of several variables, basic properties such as open mapping theorem, the Schwarz lemma. Hartogs’ separate analyticity theorem. Invariant metrics such as the Bergman, Caratheodory and Kobayashi metric.

Dr. K. Gongopadhyay (KG), IISER Mohali

&

Dr. Abhishek Mukherjee (AM), Kalna College, Burdwan

9 hrs

(6 & 3 resp.)

Conformal Maps: Euclidean similarity geometry using complex numbers. Riemann sphere.Cross ratios. Ideas of conformal transformation. Introduction to hyperbolic plane, Several models of the hyperbolic plane. Groups of Mobius transformations. Action of Mobius transformations. Geodesics. Area of a triangle. Gauss-Bonnet theorem. Schwarz’s Lemmas; Schwarz-Pick Lemma;

 

Professor Harish Chandra (HC) , BHU

 

6 hrs

Harmonic Functions, Riemann Mapping theorem; Grotzsche’s problem.

 

In addition to the above courses, there will be a 3 hrs mini-course by Professor S. Ponnusamy (online) that will give a research survey on harmonic maps in complex analysis.

 

Tutors:

  • Dr. Chandan Maity (CM), IISER Mohali

  • Dr. Narendra Singh Sijwali, Govt P G College, Dwarahat

  • Dr. Abhishek Mukherjee (AM), Kalna College, WB

  • Tejbir Lohan (IISER Mohali)

  • Ramanpreet Kaur(RK), DU

  • Nidhi Gahlyan (NG), DU

 

References:

 

1. E. M. Stein and R. Shakarchi, Complex Analysis, Princeton University Press, 2003.

2. G. A. Jones and D. Singerman, Complex Functions: An algebraic and geometric viewpoint, Cambridge University Press, 1987.

 


Time Table

First week:( 13 June - 18 June)

 

09.30

 

11.00

11.30

1.00

2.30

3.30

3.45

4.45

Mon

NSS

T

E

A

KG

L

U

N

C

H

T1

NSS

TL

RK

 

T

E

A

T2

KG

AM

CM

 

 

S

N

A

C

K

S

 

 

 

 

Tues

NSS

KG

T3

KG

AM

CM

T4

NSS

TL

RK

 

Wed

GD

KG

T5

KG

AM

CM

T6

GD

RK

NG

 

Thur

GD

KG

T7

AM

CM

TL

T8

GD

RK

NG

Fri

AM

GD

T9

AM

CM

TL

T10

GD

RK

NG

Sat

AM

GD

T11

AM

CM

TL

T12

GD

RK

NG

 

Second Week : (20 June - 25 June)

 

09.30

 

11.00

11.30

1.00

2.30

3.30

3.45

4.45

5–6:30

Mon

EKN

T

E

A

GD

L

U

N

C

H

T1

GD

NG

RK

T

E

A

T2

EKN

RK

TL

 

 

S

N

A

C

K

S

 

 

 

 

 

Tues

EKN

GD

T3

GD

NG

RK

T4

EKN

RK

TL

 

Wed

HC

EKN

T5

HC

NSS

CM

T6

EKN

RK

TL

 

 

Thur

HC

EKN

T7

HC

NSS

CM

T8

EKN

RK

TL

Samy-1

Fri

HC

EKN

T9

HC

NSS

CM

T10

EKN

RK

TL

Samy-2

Sat

HC

EKN

T11

HC

NSS

CM

T12

EKN

RK

TL

Valedictory*

 

* The valedictory meeting would include a special address (online) by the NCM director Prof (Dr.) Jugal Verma & the USERC director Prof (Dr.) Anita Rawat.

 

 

 

 

 

 

 

File Attachments: