AFS-I - Annual Foundation School - I (2021)

Speakers and Syllabus


 Algebra I (Linear Algebra and Group Theory)

[Artin] Chapters 6,7,8,9 (1st Edition) or Chapters 7,8,9,10 (2nd Edition)
[Artin] Michael Artin, Algebra, Pearson, 1991, Prentice-Hall of India, New-Delhi 2003.

Topics:

  1. Operations of a group on itself, the class equation of the icosahedral group, operations on subsets, the Sylow theorems, the groups of order 12, computations on the symmetric group, the free group, generators and relations, the Todd-Coxeter Algorithm.
  2. Bilinear forms, symmetric forms: orthogonality, the geometry associated to a positive form, Hermitian forms, the spectral theorem, conics and quadrics, the spectral theorem for normal operators, skew-symmetric forms, summary of results in matrix notation.
  3. Linear groups, the classical linear groups, the special unitary group SU2, the orthogonal representation of SU2, the special linear group SL2(R), one-parameter subgroups, the Lie algebra, translations in a group, simple groups.
  4. Group representations, G-invariant forms and unitary representations, compact groups, G-invariant subspaces and irreducible representations, compact groups, G-invariant subspaces and irreducible representations, characters, permutation representations and the regular representation, the representations of the icosahedral group, one-dimensional representations, Shur’s Lemma, and proof of the orthogonality relations.

Analysis I (Complex Analysis)

[Stein and Shakarchi] Chapters 2, 3, 4.
[Stein and Shakarchi] Elias M. Stein and Rami Shakarchi Complex Analysis, Princeton Lectures in Analysis-II, 2003.
Topics: Cauchy’s Theorem and Its Applications, Meromorphic Functions and the Logarithm, The Fourier Transform

Topology I (Point Set Topology):

 [Simmons] Chapters 1-7 and Quotient spaces: [Armstrong] Chapter 4 ‘Identification Spaces’.

  • [Simmons] G. F. Simmons, Introduction to Topology and Modern Analysis, McGrawHill, 1983.
  • [Armstrong] M. A. Armstrong, Basic Topology, Springer International Edition.

Topics:
Sets and functions, metric spaces, topological spaces, quotient spaces, compactness,separation, connectedness, approximation, Weierstrass approximation theorem, Stone-Weierstrass theorem.

Name of the speaker with affiliation Topic
Prof. Dilip Patil (formerly IISc, Bangalore)  (24 hours) Confirmed    Algebra I (Linear Algebra and Group Theory)
Hemant Bhate (Prof. Emeritus, S. P. Pune University) (24 hours) Confirmed Analysis I Complex Analysis
Nitin Nitsure (formerly TIFR, Mumbai) (24 hours) Confirmed Topology I (Point Set Topology)

 

Algebra I (Linear Algebra and Group Theory)

Associate Teachers:
1. Makarand Sarnobat
2.Parnashree Ghosh

Analysis I Complex Analysis

Associate Teachers:
1. Sagar Kalane
2. Dr. Kousik Dhara

Topology I

Associate Teachers:
1. Saibal Ganguli
2. Makarand Sarnobat

 Note: Faculty Members may pick and choose, or even introduce extra topics, so as to make the program more relevant to the students who have come to participate in AFS I.


Time Table

 

Mon

Tues

Wed

Thur

Fri

Sat

L1

L2

Tut

3.30-4.30

4.45-5.45

6.00-7.00

à

à

à

à

->

 

29 Nov
to

4 Dec

Alg

Tut Ana

Tut-Top

Ana

Ana

Alg

Top

Alg

Tut Alg

Top

Ana

Tut Alg

Top

Alg

Tut Top

Top

Ana

Tut Ana

6 to 12Dec

Ana

Alg

Tut-Top

Ana

Alg

Tut Ana

Top

Alg

Tut Alg

Top

Ana

Tut Top

Top

Alg

Tut Alg

Top

Ana

Tut Ana

13 to 18 Dec

 

Ana

Alg

Tut-Top

Ana

Alg

Tut Ana

Top

Alg

Tut Alg

Top

Ana

Tut Top

Top

Alg

Tut Alg

Top

Ana

Tut Ana

20 to 25 Dec

Top

Alg

Ana

Top

Alg

Ana

Top

Alg

Tut Top

Top

Ana

Tut Ana

Alg

Tut Alg

Tut Top

Ana

Tut Ana

Tut Alg

27 Dec  to

1st Jan

 

Ana

Alg

Tut-Top

Ana

Alg

Tut Ana

Top

Alg

Tut Alg

Top

Ana

Tut Top

Top

Alg

Tut Alg

Top

Ana

Tut Ana

3 to 8Jan

Ana

Alg

Tut-Top

Ana

Top

Tut Ana

Top

Alg

Tut Alg

Top

Ana

Tut Top

Top

Alg

Tut Alg

Alg

Ana

Tut Ana

File Attachments: