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ON SOME RELATIONS BETWEEN
THE EULER CLASS GROUP
OF REAL VARIETIES AND TOPOLOGY

RAJA SRIDHARAN

ABSTRACT. The Euler class group of a smooth affine n-
dimensional variety is in a certain sense the analogue of the
“nth cohomology group” of the variety. In this paper, we
study the Euler class groups of smooth real affine varieties
and the connections that these groups have with topology.

1. Introduction. Let A be a Noetherian ring and J C A be an ideal
such that J/J? is generated by n elements. Then, it is known (see for
example, [1, Lemma 3.2]) that J can be generated by n + 1 elements.
In general, however, J need not be generated by n elements.

For example, if m is the maximal ideal of the coordinate ring of the
real circle, corresponding to a real point, then m/m? is generated by
one element but m is not generated by one element, for the graph of
any function which intersects the circle transversally at one point must
cross the circle elsewhere.

One therefore poses the following general problem. Let A be a
Noetherian ring. Let J C A be an ideal such that J/J? is generated
by n elements. When is J generated by n elements?

In view of the example of the coordinate ring of the circle, the special
case of the general problem where the height of the ideal J is equal to
the dimension of A is of interest and one poses (again) the following:

Question 1. Let A be a Noetherian ring of dimension n. Let J C A
be an ideal of height n. Suppose J/J? is generated by n elements.
What is the obstruction to J being generated by n elements?

We briefly outline the answer to this question:
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Let J be an ideal of height n in a Noetherian ring A of dimension n >
1. Assume that J/J? is generated by n elements. An orientation wy of
J is roughly a set of n generators of J/J? modulo a certain equivalence.
To the pair (J,wy), (where wy is an orientation of J), we assign in [3]
an element of a certain group E(A) (called the Euler class group of A).
If this element of E(A) is zero, then J can be generated by n elements,
thus giving the desired obstruction.

The study of the Euler class groups E(A) of A was initiated by
Nori who defined these groups in the case where A is smooth. If A
is a smooth affine domain of dimension n > 1 and P is an “oriented”
projective module of rank n and trivial determinant, Nori associated
to P an element E(A) called the Euler class of P and conjectured that
P splits a summand of rank 1 if the Euler class of P vanishes. (This
conjecture which provided the impetus to study the group F(A), was
proved in [1].)

The example of the coordinate ring of the real circle leads us to believe
that, for real affine varieties of dimension n, the obstruction to J being
generated by n elements in Question 1 is partly topological. Since this
obstruction lies in F(A), it is of interest to compute the Euler class
groups of real affine varieties. In [2], we studied the Euler class groups
of smooth real affine varieties of dimension > 1 and computed their
structure in terms of topological and algebraic data.

In this paper, we continue this study and explore some connections
between the Euler class groups of smooth real affine varieties and
differential topology.

We briefly outline the contents of this paper.

In Section 2, we state various versions of Swan’s Bertini theorem.
This theorem serves as an algebraic substitute for Sard’s theorem
in differential topology. In Section 3 we motivate the extension of
the definitions of Euler class groups of smooth varieties of dimension
> 1 to the Euler class groups of curves. In Section 7, we define
homomorphisms from the Euler class groups of curves to free abelian
groups of a certain rank extending certain results of [2] to curves.
Sections 2 to 6 contain the necessary preliminaries needed for this
extension. In Section 8, we show how the Euler class of a rank 2
projective module over the coordinate ring of the two sphere can be
defined by a topological method. We apply this method to prove the
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known nontriviality of the Hopf bundle and tangent bundle of the real
two sphere.

In order to make the paper self-contained and easy to read we have
included the proofs of a number of standard results. We also do not
state results in their maximum generality, preferring to prove some
illuminating special cases.

2. Some preliminaries. In this section we state Swan’s Bertini
theorem ([6, Theorem 1.3 and 1.4]). We deduce various corollaries
which will be used in later sections. We begin with a weaker version of
Swan’s Bertini theorem.

Proposition 2.1. Let A be a Noetherian ring and [a1, ag, - . ., an, a] €
A™*L. Then, there ewists an element [b1,... ,b,] € A™ such that if
I = (ay +aby,...,an + aby), then we have height (I,) > n, that is, if
Q €SpecA, I CQ and a ¢ Q, then height (Q) > n.

Proof. If a belongs to every minimal prime ideal of A, then a belongs
to every prime ideal of A and there is nothing to prove. Let us suppose
that this is not the case, and let @Q1,...,Q, be the minimal prime
ideals of A which do not contain a. Since a ¢ Q;, the ideal (a1,a) is
not contained in Q;, 1 < i < s. Hence, we can choose b; € A so that
ai + bia §é Uf«:lQi-

Having chosen by,... ,bs for s < n we choose bsy; as follows:

Suppose Q,...,Q; are the minimal prime ideals containing the
ideal (ay + b1a,...,as + bsa) such that a ¢ Q}, 1 < i < t. If no
such prime ideal exists with the above property, we choose b1 = 0
and b; = 0, i+ > s + 1. Otherwise, we choose bs1; € A such that
asy1 + bsr1a ¢ Ul_; QL. It is easy to see that the elements by,... b,
so chosen satisfy the required property. ]

The above proposition motivates the following Bertini theorem due
to Swan. (See [2, Theorem 2.11] for the following version.)
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Theorem 2.2. Let A be a geometrically reduced affine ring over
an infinite field, and let P be a projective A-module of rank n. Let
(a,a) € P*® A. Then, there exists an element 38 € P* such that if
I = (a+aB)(P) then

(i) Either I, = A, or I, is an ideal of height n such that (A/I), is
a geometrically reduced Ting.

(ii) If A is smooth (A/I), is also smooth.

(i) In particular, if J = (a1,as,...,an,a) is an ideal of A, there
exist by, ... ,b, € A such that if I = (a1 + bya,...,a, + bpa), then I
satisfies properties (i) and (ii). o

We now record various corollaries of this theorem for future use in
this paper. We state the results only in the generality that we need
them.

Corollary 2.3. Let A be a regular affine domain over an infinite
perfect field of dimension n. Let ay,...,a, € A be such that the ideal
(a1,...,an) = NE_ym;, where the m;, 1 <1i < s, are distinct mazimal
ideals of A. Then, we can choose by, ba,... b,_1 € A such that the
ideal I = (a1 +bian, az+biay, ... ,an—1+b,_1a,) satisfies the property
that A/I is regular of dimension 1.

Proof. By Swan’s Bertini theorem, we can choose by,...,b, 1 € A
such that the ideal I = (a1 + bian,... ,an—1 + bp_1a,) satisfies the
property that the localization (A/I),, is regular for every maximal ideal
of A which contains I and does not contain a,. Since (ai,...,a,) =
Ns_,my, it follows that the localization (A/I)y,, is regular for every m;,
1 <14 <s. Hence A/I is regular. o

The proof of the following corollary is similar and hence is omitted.

Corollary 2.4. Let A be a regular affine domain over an infinite
perfect field of dimension n. Let ay,...,a, € A be such that the ideal
of (a1,...,a,) = Jy Nma N --- N my, where ma,... ,my are distinct
mazximal ideals of A and Jy is my-primary, where my is a mazimal ideal
of A different from may,... ,my. Then, we can choose by,... ,b,_1 € A
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such that the ideal I = (a;+bia,... ,an—1+b,_1a) satisfies the property
that dimA/I =1 and (A/I),, is regular for every mazimal ideal m of
A/J different from m;.

Corollary 2.5. Let A be a regular affine domain over an infinite
perfect field of dimension n. Let P be a projective A-module of rank n.
Then, there exists a surjection § : P —— J, where either J = A, or
J = N{_;m; is the intersection of finitely many mazimal ideals of A.

Proof. We choose any linear map o : P — A and apply Swan’s Bertini
theorem to the element (a,1) € P* @ A. O

The following corollary has a similar proof.

Corollary 2.6. Let A be a regular affine domain over an infinite
perfect field of dimension n. Let P be a projective A-module of rank n.
Let (o,a) € P* @ A be such that o(P) + aA = A. Then, there ezists a
B € P* such that (a+aB)(P) = N_;m;, where m; are distinct mazimal
ideals of A.

Corollary 2.7. Let A be a regular affine domain over an infinite
perfect field of dimension n. Let J C A be an ideal such that J/J? is
generated by n elements. Let at,...,a, generate J/J?. Then, we can
choose lifts c1,... ,cp € J of ay, ... ,a,, which satisfy the property that
(c1y-..,cn) =JNJ', where J+ J' = A and either J' = A or J is the
intersection of finitely many mazimal ideals of A.

Proof. Since (ai,...,a,) + J? = J, we can choose a € J? such
that (aq,...,an,a) = J. By Swan’s Bertini theorem, we can choose
b1,...,b, € Asuch that the ideal I = (a; + b1a, ... ,a, +bya) satisfies
property (i) of Theorem 2.2. Let ¢; = a; + b;a, 1 < i < n. Then, since
a€J? (c1,...,cn)+J*=J. Hence, I = (cy,...,c,) = JNJ', where
J + J' = A. Note that, since a € J, (A/I), = (A/J)s. Hence, it
follows that J' satisfies the required property.
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3. The Euler class group of a circle. The graph of a polynomial
function f(X,Y’) = 0 of two variables can be thought of as the path of
a particle. Let us consider such a function and assume that the particle
crosses the X axis transversally at every point where the graph meets
the X axis.

Let us assume that the X axis is a boundary which separates “land”
from “water.” Let us choose in a continuous manner a tangent vector
at each point on the X axis and also at each point on the graph of
f. At each point where the graph of the function meets the X axis,
we then have a basis of R2. The determinant of the matrix formed
by these two basis vectors is a nonzero real number. The sign of the
determinant is either positive or negative depending on whether the
particle is “entering water from land” or “entering land from water.”

In the above situation, we considered the zeroes of two functions
f(X,Y) =0and Y = 0 (the X axis). Let us generalize this a little
bit and consider the graphs of the zeroes of two arbitrary polynomial
functions f(X,Y) = 0 and ¢g(X,Y) = 0. Assume that when the
graphs meet, they meet transversally. At each point, in the graphs, we
can assign in a continuous manner normal vectors, instead of tangent
vectors. At each point (a,b), where the graphs meet, we consider the
matrix, whose rows are the normal vectors.

99 99
ax @0 gyt
of of
ox @ gy(@?)

Since the graphs of f = 0 and g = 0 meet transversally at (a,b),
the determinant of this matrix is not zero. For example, when g =
X2 4+ Y? — 1, the sign of this determinant measures, whether the
“particle” tracing the graph of f = 0 is “entering” or “leaving” the
interior of the circle at (a, b).

We will use these ideas in what follows, to show that if m C
(R[X,Y])/(X? +Y? — 1) = A is a maximal ideal such that A/m is
real, then m is not principal. This is well known, but the proof we give
will motivate the definition of the “Euler class group” of a curve.

Proposition 3.1. Let A = (R[X,Y])/(X%2+Y?2-1) be the coordinate
ring of the real circle. Let (zo,y0) be a point on the circle and m, the
corresponding mazimal ideal of A. Then m is not principal.
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Proof. Suppose m = (f(z,y)). Then f generates m/m?2. In
particular, the graph of f(X,Y) = 0 intersects the circle transversally
at (xg,y0). Therefore, the normal to the graph of f and the normal to
the circle at (zg,yo) form a basis of R?. Therefore, the determinant of

the matrix
Zo, Yo
O (or0)s % (o, o)
X Z0,Y0), oY Zo, Yo
is equal to ¢, where c is different from 0.

Let p: R — S* be the covering projection sending t to (cost,sint).
Let ¢ : R — R be defined by g(t) = f(cost,sint). Assume that
(costy,sinty) = (x0,y0). Then, we can verify easily using the chain
rule that ¢’(t) at t = to is equal to c.

Assume now without loss of generality that (xq,yo) # (0,1). Then
g(0) = g(27) # 0. We have the following:

Fact. Let g : R — R be a continuously differentiable function such
that g(0) = g(2m) # 0. Suppose ty € (0,27) such that g(¢t9) = 0,
g'(to) # 0. Then, there exists a ¢t1 € (0,27), t1 # to, such that

Applying this fact to the function g defined as above we see that f
vanishes on the circle at a point on the circle different from (zo,yo)
showing that m is not principal. This proves the proposition.

More generally, we have the following.

Proposition 3.2. Let A = (R[X,Y])/(X? +Y2—1). Let fe A
be such that the ideal (f) = NI_;m; is the intersection of finitely many
distinct real mazimal ideals of A. Then r is even.

Proof. The proof of this proposition is similar to the proof of
Proposition 1. Rather than giving a formal proof, we explain the idea.

The graph of the function f(X,Y) = 0 can be thought of, as before,
to be a path of a particle. This particle enters or leaves the interior of
the circle at points on the circle corresponding to the maximal ideals
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m;. Whether it enters or leaves can be decided by looking at the sign
of the determinant of the matrix

( a;, b; >

of of

8—X(aubz)a 8—Y(azabz)

where (a;, b;) is the point of S1 corresponding to m;. The proposition

follows from the fact that if the particle enters the interior of the circle,
then it also leaves the interior of the circle.

To see this, we note as we did earlier that the function f : S' — R
gives rise to ¢ : R — R where g(t) = f(cost,sint). Without loss of
generality, we may assume as before that g(0) = g(27) # 0.

The graph of function g can be thought of as the path of a particle.
The particle crosses the X axis r times on (0, 27). Whether the particle
is “entering” or “leaving” at these points can be decided by looking at
the sign of the derivative of g at these points (that is, the points where
g vanishes).

Let function g have finitely many zeroes ti,... ¢, on [0,27]. Since
9(0) = g(2m) # 0 and ¢'(¢;) # 0 for every 4, (we will show this shortly)
we have Y. sign(g'(t;)) = 0, where sign (¢'(t;)) = 1, if ¢'(¢;) is
positive and sign (¢'(¢;)) = —1 if ¢'(¢;) is negative.

Let m; correspond to the point (a;,b;) of S'. The determinant of the
matrix

( aj, bz )
of of
8_X(aza bz)a 3_Y(a“ bZ)

is u;, where u; is a unit of A/m;, that is, u; is a nonzero real number.
As in Proposition 1 we see that u; = g’(¢;). Hence, ¢'(t;) # 0. Further,

T T
> sign (u;) = sign (¢'(:)) =0,
i=1 i=1
showing that r is even. This proves the proposition. u]

We would like to use the ideas in the proof of the proposition to
define the “Euler class group” of (R[X,Y])/(X?+Y? —1). To do this
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we associate to the polynomial function f(X,Y), defined on S! as in
Proposition 3.2, the formal sum

T

Z(miaui)v

i=1
and we say that this sum “corresponds” to function f.
The question we ask is the following. Given a sum

S

> (mly ),

i=1

where u] is a unit of A/m}, does there exist a polynomial function ,
defined on S!, that is an element h € (R[X,Y])/(X? +Y? — 1) such
that (k) = Ni_;m} and the sum > ;_,(m!, u}) corresponds to h?

7) K2

Motivated by this question, we are led to the following tentative
definition of the “Euler class group” of A = (R[X,Y])/(X?+Y? —1).

Definition. Let G be the free abelian group generated by pairs
(m;,u;), where m; is a real maximal ideal of A = (R[X,Y])/(X?% +
Y? —1) and u; € A/m; is a unit.

Let H be the subgroup of G generated by

S

Z(m;-,u;.),

i=1
where (h) = N;_ymj, (m} distinct) and

S

D (mj )

i=1

corresponds to h (in the sense explained above).

We define the Euler class group of A denoted by E(A) to be the quo-
tient G/H. In the above tentative definition, we have only considered
real maximal ideals. We now give a definition which takes into ac-
count complex maximal ideals by defining the Euler class group of any
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regular one-dimensional affine domain. We begin with some consider-
ations that motivate this definition. Let f € (R[X,Y])/(X%?+Y?%-1),

be such that f generates m; /m?, where m; is a real maximal ideal of

(R[X,Y])/(X? +Y? — 1) corresponding to the point (a;,b;) of S*.

We have the following linear functions defined on R?.

1. (0f/0X)(ai,bi)(X — a;) + (0f/9Y )(ai, b;)(Y — b;), which defines
the tangent to the curve f(X,Y) = 0 at the point (a;, b;).

2. a;(X —a;) + b;(Y — b;), which defines the tangent to the circle at
(ai, bl)

3. —bi(X —a;) + a;(Y —b;), which defines the normal to the circle at
(ai, bl)
The function, —b;(X —a;) + a;(Y —b;) is a basis for the one-dimensional
vector space m;/m?. Let

< ag, bi >
det | of ﬁ N T
O_X(a“bl)’ oY (aubZ)

a;, b\ _
det (bi, ai) =1.

An easy computation then shows that

f=ui(=bi(x — a;) + a;(y — b;) in m;/m?.
Now, we note that, at each point (a,b) € S!, the normal h/ =
—b(z — a) + a(y — b) generates m/m?, where m is the corresponding
real maximal ideal. Therefore, to a unit u € A /m, we can associate an
element uh’ of m/m?. In view of this correspondence, the definition of

the Euler class group of A = (R[X,Y])/(X?+Y?2—1) can be rewritten
as follows:

We have

Definition. Let G be the free abelian group generated by the set
of pairs (m,wy), where m is a real maximal ideal of A and w,, is a
generator of m/m?.

Let H be the subgroup of G generated by elements of the kind

S

Y (mj,wm,),  (my distinct),

i=1
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where g € A is such that (g) = Nj_;m;, and wy,; is the generator of
mj/m3 given by g.

We define the Euler class group of A to be the quotient G/H.

Now we are ready for the final general definition of the Euler class
group of any regular affine domain. (See [1, Section 4, Remark 4.6] for
the definition of the Euler class groups of higher-dimensional varieties
on which this definition is based.)

Definition 3.3. Let A be a regular affine domain over a field k
with dim A = 1. Let G be the free abelian group on the set of pairs
(m,wy,), where m is a maximal ideal of A and w,, is a generator of
m/m?. Let H be the subgroup of G generated by elements of the kind
> i1 (my,wim;), where (9) = N3_ymy, (m; distinct) and wy,, is the
generator of m;/ m? given by g.

We define the Euler class group of A denoted by E(A) to be the
quotient G/H. o

4. A heuristic argument. Let f(X,Y) € R[X,Y] be a polynomial
function such that the ideal (f(X,Y), X% +Y? — 1) = N’_;m;, where
the m; are distinct real maximal ideals of R[X,Y].

Let m; correspond to the point (a;,b;) of S! and

< aj, b'L >
det | Of of = u;.
aX(azabz)a aY(aubl)

Then, as in Proposition 2, we have

Z sign (u;) =0
i=1
We prove the following generalization.

Theorem 4.1. Let f(X,Y,Z), g(Z,Y,Z) € R[X,Y, Z] be polyno-
mial functions such that

(f(X,Y,2),9(X,Y,2),X*>+Y?+ Z> — 1) = Ni_ym,
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where m; are real mazimal ideals of R[X,Y, Z]. Let m; correspond to
the point (a;,b;,c;) and

a;, bi7 Ci
of of of
det 8X(alablacz) 6Y(alablacz)’ 6Z(azabz)cz) — ’U/Z
99 99 dg ,
BX(aubuCl) ay(alabucl)v az(aubucl)

Then Y_._, sign(u;) = 0.

We will first indicate an heuristic argument showing why this theorem
should be true giving a rigorous argument later.

Proof. Assume that the common zeroes of f(X,Y,Z) and ¢(Z,Y, Z)
define a smooth curve. The tangent plane to f(X,Y,Z) at any real
point (zo, Yo, z0) such that f(zo, yo, 20) = 0 is given by:

0 0
8—;((960,%,20)()( —xo) + 81{ (%0, Y0, 20)(Y — v0)
g;(ivmyo,zo)(z —29) =0.

Similarly, the tangent plane to g(X,Y, Z) at any real point (zy,y121)
such that g(x1,y1,21) = 0 is given by:

dg

a—X($1,y1,Z1)(X*$1) (xlayl,zl)(yfyl)

0g
oY
+ 29 )2~ 21)=0
8Z T1,Y1521 z1) = U
Suppose that (z2,y2,22) is a common real zero of f(X,Y,Z) and
9(X,Y, Z). Let
— (O (a2, 2 ) 29 )
U1 = aX T2, Y2, 22 Yy T2,Y2,22), EYA T2, Y2, 22

and

09 w2,y 20), 2L (s 2)y 2 (2,4, 22)
V2 = X x2,Y2, 22 oY r2,Y2,22), EYA x2,Y2,22) |-
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Let the cross product

V1 X V2 = w(x27y21z2)‘

Then (2,2, 22) + W(z,,y.,2) 1S a tangent vector at (r2,y2,22) to the
curve given by the common zeroes of f(X,Y, Z),g(X,Y,Z)), and the
assignment sending each real point (z2,ys, 22) belonging to the curve
t0 W(awy,ys,2s) 18 cOntinuous.

Now, by assumption,
(f(X,Y,2),9(X,Y,2), X +Y?> + 2> = 1) = [ | m,
i=1

where m; corresponds to the real point (a;, b;, ¢;). A computation shows
that u; = (a4, b, ¢i) - W(a, b, ,c;), Where - denotes the dot product of two
vectors.

By assumption, the real points of the common zeroes of f(X,Y, Z)
and ¢g(X,Y, Z) form a smooth curve. This curve can be thought of as
the path of a particle which enters and leaves the interior of the sphere.
At each point (zg, yo, 20) where the particle enters the interior of the
sphere, the angle between wyz, yo.2,) and (zo, yo, 20) is obtuse. At each
point (z1,y1,21), where the particle leaves the interior of the sphere,
the angle between w(,, 4, »,) and (x1,y1,21) is acute. Since

Ui = W(a;,bs,c;) (a'ia bs, C,’),

we have Y7 sign (u;) = 0. (That is, if the particle enters the interior
of the sphere it also leaves the interior.)

5. The classification of one dimensional manifolds corre-
sponding to smooth real algebraic varieties. The results of this
section are devoted to making the heuristic argument given above rig-
orous. We shall use in this section the well-known classification of
one-dimensional smooth real manifolds. We will present the details of
this classification following [5, pages 264-267].

Let f(X,Y, Z), 9(X,Y, Z) be polynomial functions such that the ring

RIX,Y, Z]
[(X,Y,2),9(X,Y, 2Z)

is regular.
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Assume also that polynomials f,g have at least one common real
zero. By the Jacobian criterion we see that, at each common zero
of f(X,Y,Z2),9(X,Y,Z), the determinant of at least one 2 X 2 minor
of the matrix

of of of
a_X(a’b’ o), a_Y(a’b’ ), a—Z(a’b’ o)
dg dg dg
a_X(a’b’ o), a_Y(a’b’ o), a—Z(a’b’ o)

is nonzero.

By a one-dimensional manifold M (for the purposes of this discus-
sion), we mean a path connected component in R?® of the set of real
zeroes of f(X,Y,Z), g(X,Y,Z), where, f(X,Y,Z), g(X,Y,Z) are as
above.

Definition 5.1. Let M be as above. Let p = (p1,p2,p3) € M. By
the tangent space to M at p, we mean the set (a,b,c) € R? such that

%(Plapzaps)(a—P1) + g—){(b—pz) + g—é(c—pg) =0

and

0 0 0
29 (p1,p2,p3)(@ — p1) + oo (b— p2) + o (c — p3) = 0.

0X oY 0Z
The tangent space to M at p is denoted by T,(M). By the tangent
vector to M at p, we mean the affine subspace p+7,(M) of R3. (Note
that if (R[X,Y, Z])/(f,g) is regular, by the Jacobian criterion T, (M)
is one dimensional.) o

Let M be a connected one-dimensional manifold as above and p € M.
Then, since (R[X,Y,Z])/(f(X,Y,Z),9(X,Y,Z)) is regular, we can
apply the implicit function to obtain a neighborhood V' C R?2 of p
such that the following holds (after possibly relabeling coordinates):

(i) There exists a C! map from an open interval o : I — R? sending
t to (t,91(t), 92(1)).
(ii) The image of o is equal to V N M.
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Definition 5.2. Let M be a connected one-dimensional manifold
as above and p € M. A regular local parametrization of M in a
neighborhood of p is a C! map from an open interval I to R3 given by
a(t) = (o1(t), 02(t), o3(t)) satisfying:

(i) o(I) C M.
(i) p € o(I).
(iii) for every t € I, o'(t) = (o1 (¢), oh(¢), o%(¢)) # (0,0,0). O

By the implicit function theorem, regular parametrizations exist in a
neighborhood of any point p € M.

Definition 5.3. Let M be as above. A regular local parametrization
o : I — M is said to have unit speed if |o'(t)| = 1 for every t € I.

Lemma 5.4. Let M be as above. Then, reqular local unit speed
parametrizations exist in the neighborhood of any point p € M.

Proof. Let 0 : I — M be a regular local parametrization of a
neighborhood of p € M. We can choose a closed interval [a, b] contained
in I such that p = o(t9), to € (a,b). Let g : [a,b] — R be defined as
follows:

o(t) = / o/ (1)) dt.

Then, since ¢ is regular, g maps [a,b] in a one-to-one manner to an
interval [0, A]. Let h be the inverse of g. Then oh maps [0, A] to M.
We claim that this is a unit speed parametrization. To see this, we
compute

L o(h(s) = o ()W ()
1 /
= 7" M)
1

Hence, oh has unit speed. This proves the lemma.
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Lemma 5.5. Let M be as above. Let o : I — M be a regular local
parametrization of M, where I is an open interval. Then o(I) is open
i M.

Proof. Let tg € I. In the course of the proof we will shrink the
interval I containing ?;, and assume that some further properties are
satisfied.

Let a(to) = ¢ = (g1, 92, 93)- Applying the implicit function theorem,
we can choose a neighborhood V of ¢ in R and a C* map, 7: I' — M
given by 7(t) = (t,72(t), 73(t)), such that the image of 7 = V' N M.
Let 0 = (01, 092,03). Since o(ty) = (q1,¢2,93) and ¢q; € I’, shrinking
I, we may assume that o1 (I) C I'. Further, we may also assume that
o(I) C VN M. Therefore, if t € I, o(t) = (01(t), 2(01(t), T3(01(2)).
Now, since o is regular, we see using the chain rule that of(¢o) # 0.
Therefore, by the inverse function theorem, o4 (I) contains an interval
I" such that q; € I and I" C I'. Let p; : R® — R be the projection
to the first coordinate. We choose a neighborhood W of ¢ in R? such
that py (W) C I". Tt is easy to see that VN W N M C o(I). Hence,
o(I) is open in M. This proves the lemma. O

Lemma 5.6. Let M be as above. Leto : I — M, t:J — M be
two regular local parametrizations such that o(ty) = 7(t1). Then, there
exists an open subinterval K of I containing ty, and a C' function
At K — J, such that T(A(t)) = o(t) for every t € K.

Proof. The idea of the proof is to set A = 7~ 1. We give the details.

Let 7 = (71, 72, 73). Since 7 is regular, we may assume without loss of
generality that 7{(¢1) # 0. Shrinking J, we may assume that 7{(¢t) # 0
for every t € J. Therefore, as a consequence, we may assume that 7 is
one. We may assume further by the previous lemma, that there exists
a neighborhood V of 7(¢1) in R? such that VN M C 7(J). We can find
an open subinterval K of I containing ¢¢ such that o(K) C V N M.
Let p; : R®> — R be the projection onto the first coordinate. Since
71(t) # 0 for every t € J, by the inverse function theorem, the map
p17 is invertible with C! inverse . Let A\ = up;o. Then ) satisfies the
required property. This proves the lemma. ]
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Lemma 5.7. Let M be as above. Let ¢, : I — M be regular local
parametrizations which have unit speed at every point. If ¢(to) = ¥ (to)
and ¢'(to) = ¢'(to) for some point ty € I, then ¢(t) = ¢¥(t) for all
tel.

Proof. Since [ is connected, it is enough to show the set of ¢, where
#(t) = 9¥(t) is open. We show that ¢(¢) = ¥(¢) in a neighborhood of
to. By the previous lemma, there exists an interval K containing ¢
and a C* map A\ : K — I such that ¢ =1 - A and A(to) = to. By the
chain rule ¢’ (t) = ¢'(A(¢)N'(¢). Now since both ¢’ and ¢’ have absolute
value 1, it follows that )\’ has absolute value 1 and since X is C!, X is
identically equal to 1 or —1. Since ¢'(to) = ¥'(t0), A(¢) = ¢, near to.
This proves the lemma. u]

Lemma 5.8. Let ¢1 : Iy — M and ¢ : Is — M be regular local unit
speed parametrizations. If ¢1(I1) N ¢2(1I2) is not empty, then ¢1 has an
extension ¢ : I — M which is a regular local parametrization of unit
speed satisfying ¢(I) = ¢1(I1) U ¢o(I2).

Proof.  Suppose ¢1(t1) = ¢2(t2). Set 12(t) = ¢2(t — t1 + t2) on
Is +t1 — to.

It is clear that 9 is a regular local unit speed parametrization.
Further, ¥5(t1) = ¢2(t2) = ¢1(t1). Since the tangent space to M
at a is one-dimensional, there are just two possibilities for ¢5(t1): It
is either ¢ (t1) or —¢/(¢t1). In the first case, put ¥ = 12, and in the
second case put ¥(t) = 12(2t; — t). Note that the map sending ¢ to
2t, — t sends 0 to 2ty, 2t; to 0, fixes t; and reverses orientation. By
the previous lemma, ¥ = ¢; on the interval where both are defined.
Therefore, we can put ¢ = ¢; on I, and ¢ = ¥ on the interval, where
1 is defined. This function ¢ does the job. a

Lemma 5.9. Let M be as above. Then there is a regular local unit
speed parametrization ¢ : I — M such that ¢(I) = M.

Proof. Choose a point ¢ € M and a unit tangent vector v to M at
a. Let I be the union of all intervals J containing 0, such that there
is a regular local parametric representation of unit speed ¢y : J — M
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with ¢7(0) = a and ¢/;(0) = v. Applying Lemma 5.4 (and reversing
orientation if necessary), we see that ¢ certainly exists if J is small
enough. If J and K are any two such intervals, then by Lemma 5.7,
¢; = ¢ on JNK. Consequently, the ¢ ; determine a ¢ that is defined
on the whole interval I. The function ¢ is a regular local unit speed
parametrization of M. By construction, there is no extension of ¢ to a
regular local unit speed parametrization defined on an interval larger
than I. It follows by Lemma 5.5 that ¢(I) is open in M. If we can
show that ¢(I) is closed in M, then by connectedness, we shall have
é(I) = M. If ¢(I) is not closed in M, let b € M be a point in the
closure but not in ¢(I) itself. Let ¢ : J — M be a regular local unit
speed parametrization such that b € image (1). Since ¥ (J) is open in
M, we must have ¢(I) N (J) is not empty. Therefore, we can use the
previous lemma to extend ¢. Since this is impossible, it follows that
the assumption that ¢(I) is not closed in M does not hold up. This
proves the lemma. a

Lemma 5.10. Let M be as above. Let ¢ : I — M be a regular
local unit speed parametrization. Suppose to,t1 € I with t; # to, and

¢(t1) = d(to). Then ¢'(t1) = ¢'(to)-

Proof. Let ¢(to) = ¢(t1) = p. Since T (M) is one-dimensional,
and |¢'(to)| = [¢'(t1)| = 1, either ¢(to) = ¢'(t1) or ¢'(to) = —¢'(t1).
Assume the second possibility holds. The restriction of ¢ to [to, (to +
t1)/2] is a function which corresponds to the path of a particle. The
function sending t to ty + t; — ¢ takes the interval [(tg + t1)/2, 4]
to [(to + t1)/2,t0]. The function ¢ : [(to + t1)/2,t1] — M given by
P(t) = J(to + t1 — t) corresponds to the path of a particle which
retraces the above path backwards. We can extend ¢ to a function
to +t1 — I — M giving the same definition

(*) Y(t) = P(to +t1 —t).
Note that [tg,t1] C to +t1 — I. Differentiating ¢ at t1, we get
Y(t) = —¢'(to) = ¢'(t1).
Further, ¢(t1) = ¢(to) = ¢(t1). Hence, by Lemma 5.10, ¢ (t) = ¢(¢) on
INty+t; — I. Therefore,

o+t  ,fto+1
V() - ()



REAL VARIETIES AND TOPOLOGY RELATIONS 261

However, differentiating * at (to + ¢1)/2, we get

ottt s ftot+t
(o) - (t)

This is a contradiction and proves the lemma. a

Lemma 5.11. Let M be as above. Let ¢ : I — M be a regular local
unit speed parametrization. Suppose that ¢ is surjective. Let t; > tg
and ¢(t1) = &(to). Then ¢ extends to a surjective regular unit speed
parametrization ¥ : R — M.

Proof. Divide the real line into intervals [to,t1], [t1,t1 + (t1 — to)],
etc., of length t; — tg. Since ¢(t9) = &(t1), we have ¢'(tg) = ¢'(t1)
(Lemma 5.10), and so by Lemma 5.7 we can extend ¢ to a C! function
1+ R — M such that v is periodic of period t; — to. This proves the
lemma. O

Using a similar argument, we obtain

Lemma 5.12. Let M be as above. Let ¢ : I — M be a regular local
unit speed parametrization such that ¢ is surjective. Assume that ¢ is
not one-to-one. Then ¢ extends to a periodic C* function 1 : R — M
of period a > 0, such that ¢ is one-to-one on (0, a).

We now prove Theorem 4.1, which we restate for convenience.
Theorem 5.13. Let f(X,Y,Z), h(X,Y,Z) € R[X,Y,Z] be such
that
(f(Xa}/aZ)?h(XaKZ)?XZ +Y2 + Z2 - 1) = m;:lmia

where m; are real mazimal ideals of R[X,Y, Z]. Let m; correspond to
the point (a;, b;,c;) and

a;, bi, C;
of of of
det 8—X(azabzacz)a 8—Y(azabzacz)a 8—Z(azabzacz) = u;.
oh oh oh
ax (abic) Fo(aibi ), - (aibi )

Then Y ;_, sign (u;) = 0.
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Proof. The method of proof is based on the proofs of Propositions
3.1 and 3.2 and the heuristic argument we gave.

The ring A = (R[X,Y, Z])/(X%2+Y?+ Z? — 1) is regular. By Swan’s
Bertini theorem 2.3, we can choose A(z,y, z) € A such that the element
f' = f + Ah satisfies the property that A/(f’) is regular.

Therefore, replacing f by f 4+ Ah, we may assume that A/(f) is
regular. We note that this transformation does not change the value of
the determinant above.

Since the ring (R[X,Y, Z))/(f(X,Y,Z), X?+Y?+ Z? — 1) is regular,
the common real zeroes of (f(X,Y,Z), X2+Y?2+Z%—1) are the disjoint
union M7 U My U - U M; 1 U M; of path connected manifolds. We
consider those maximal ideals say my, ... ,ms which belong to a fixed
connected component, say M;. We will show that Y_;_; sign (u;) = 0.
If we do this for each connected component, the theorem will be proved.

Using the implicit function theorem, we see that each M; is open
in M.

By Lemma 5.9, there exists a surjective regular local unit speed
parametrization o : I — M;, where [ is an open interval. We claim
that o is not one-to-one. Assume to the contrary that o is one-to-one.
Since I is an open interval, we have an open cover of I which has no
finite subcover. Taking the image under o, we obtain by Lemma 5.5,
an open cover of M; which has no finite subcover. Now, since each
M; is open in M, we obtain an open cover of M which has no finite
subcover. But M being a closed subset of S? is compact. This is a
contradiction and hence ¢ is not one-to-one.

By Lemma 5.12, there exists a surjective C' map o : R — M; such
that o is periodic of period o > 0 and o is one-to-one on (0, a).

Let (a,b,c) be any point of M;. Let vy = (a,b,c), va = ((8f/0X) %
(a,b,¢), (0f/0Y)(a,b,c), (0f/0Z)(a,b,c)) and w(gp,c) = (v1xv2)/|[v1x

v2|| where x denotes now the cross product of two vectors.
Let o(t) = (a,b,¢) and wi,, ., = (¢’(t))/||o"(t)[|.- The assignments

sending (a,b,c) € My to w(,p,c) and wE ) are continuous. Note that

a,b,c
W(q,b,c) and wEa b,c) € unit tangent vectors at each point (a,b,c) € M.
Since Mj is connected, without loss of generality, we may assume that

Wa,be) = w2a7b7c) for every (a,b,c) € M.
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Now, the polynomial function A : M; — R gives a C! function
p = ho : R =& R. We may assume that p(0) = p(a) # 0. We note
that, since the function h has s zeroes on M, corresponding to the
maximal ideals my,...,mg, the function p has s zeroes t1,...,t; on
(0, @) corresponding to the maximal ideals my, ... ,m . If we show that
p'(ti) # 0 for every i, then, since p(0) = p(«a), as in Proposition 3.2,

> sign (9'(t:) = 0.

Let 0 = (01,02,03). Then p(t) = h(o1(t), 02(t), o5(t)). We have
oh , oh

P E) = o8 (0(8) 02(8), 0505 (1) + oo (018, 22(8), 35(1)) (1)
+ 2 (010, 02(8),93(0)) - G4(0).
Hence,
Pt;) = (OI;L)CLOX)(ai, biyei)oh (t:) + (OR/OY) (as, bi, ci)ob(t:)
+ 8—Z(ai,bi, c;)ob(t;)-

Note that w(qg, b, ,c;) = wzai,bi,cl-) and u; # 0. Now, a computation shows
that sign (u;) = sign (p'(¢;)). Hence, p'(t;) # 0 and as before we see
that

D> _sign (v'(t)) = 0.

Further, >°7 ;sign(u;) = Y. ;sign(p’(t;)) = 0. This proves the
theorem. |

Remark 5.14. Let A = (R[X1,...,2n])/(f1,..-, fn—1) be a regular
affine domain of dimension 1. Let X = Spec A, and assume that
X(R) is not empty. Let M be a path connected component in R"™
of X(R). Then, the classification of one-dimensional manifolds given
in this section also applies to M. a

6. Another proof of Theorem 4.1. In this section, we give
another proof of Theorem 4.1. We first begin with some topological
preliminaries.
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Let us consider the circle S' which consists of real zeroes of X? +
Y2 — 1. We have map «a : (—1,1) — S! given by a(t) = (t,V1 —t2).
We also have a map 3 : (—=1,1) — St given by B(t) = (¢, —V1 — t2).
As a particle travels along the X axis from —1 to 1, its image under
a travels in a clockwise direction on the circle, and its image under
[ travels in an anticlockwise direction. We formulate this observation
using matrices.

Let a(t) = (a1 (t), a2(t)), where

Oél(t) = t, Oég(t) =V 1-— t2.

The tangent vector to the curve a(t) at time ¢ is given by the vector

(a1 (t), 5(1)),
(1, —t/v1 ).

We consider the matrix whose columns are given by the tangent vector
and normal vector to the curve a(t) viz.,

1 t
—1
[ 1 —¢2 .
1—1¢2

The determinant of this matrix is positive for each ¢ € (—1,1).

Note that 8'(¢t) = (1, (¢/v/1 —¢2)). We see that the the matrix whose
columns are given by the tangent and normal vector to the curve 5(t),
viz.

1, t
t
e 1 — ¢2
V1—1t2
has negative determinant for each ¢ € (—1,1).

We now consider the two-dimensional versions of the above state-
ments.

Consider the disc D = {(a,b) € R? | a®> + b? < 1}, and let
c:D— §*

be defined as

o(u,v) = (u,v, V1 —u? —v?2),
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and let 7 : D — S? be defined as
7(u,v) = (u,v, —V/1 — u? — v2).

Note that, restricted to the open disc, o and 7 are C*° maps. We
consider the 3 x 3 matrix 8 whose columns are o, (u,v), o,(u,v) and

02 —02). vi
) ) ) -
(u,v, V1 —u? —v?), viz

1, 0, U
0, 1, v
v Y 1—u2—0o2

VI—u? =02 1—u? 0¥
This matrix has positive determinant for all (u,v) belonging to the
open disc.

Similarly, we see that the matrix E whose columns are

Tu (U, ), To(u,v) and (u,v, —v/'1 — u? — v2)
has negative determinant for all (u,v) in the open disc. (This matrix

is explicitly written down in a following lemma).

We note that the vectors o, (u, v), oy (u,v), 7, (u,v), 7(u,v) are tan-
gent vectors to the two sphere S2 and the vectors (u,v,v/1 — u2 — v2),
(u,v, —V1 — u2 — v2) are normal vectors to S2. Now let f,g: R® - R
be C* functions. Let D’ be the open disc {(a,b) € R? | a® + b* < 1}.

Define F, G from the open disc D° — R as follows:

F(u,v) = f(u,v,V/1—u? —0v2)
G(u,v) = g(u,v,v/1 — u? —v2).

Similarly, define F’, G’ from the open disc D° — R. as follows:

F'(u,v) = f(u,v,—V'1 — u2 — v2)
G'(u,v) = g(u,v, —V1 — u? — v2).

With the notation as above, we have the following lemma whose proof
follows from a computation which uses the chain rule.
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Lemma 6.1. Let (ug,vg) belong to the open disc of unit radius and

(ﬂ?o,yo,ZO) = (u07UO, vV 1-— Ug — ’Ug) Let

fx(ivo, Yo, ZO)a fY(wo,yo, Zo), fz(évo, yo,Zo)

o = gx(wo,y0,20)7 gY(l'anOaZO)a gz(wo,yo,zo)
Lo, Yo, 20
and
1, 0, U
0, 1, Vo
b= _ % _ Y% 1—u? —v?
Vi@ % VT @] g o
Th
en oF
%(uo,vo), OF0v(ug,vp), 0
ap =1 o6G oG
%(UO,UO), %(UO’UO), 0
*7 *7
Let
fx(ivo,yo,zo)a fY(170,yOaZO), fz(ivo,yo,zo)
a = gX(x07y07ZO)a gY(l‘anOVZO)a gZ(x07yOaZO)
Zo, Yo, 20
and
17 07 Up
2 _ 07 17 Vo
b= 4o Y0 /1 —u2 — 2
VIi—Z =02 JT—ud =2 o0
Then

F/
% (uo,v0), OF'Ov(ug,v), O
u
af = | ac oG’
%(UO,UO), Ee (u0,v0), 0
*, *, 1

In the next few lemmas, we will use z,y instead of X,Y to denote
the coordinate functions in R2. The proofs of these lemmas are taken
from [4, Appendix B and Appendix D].
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Lemma 6.2. Let f: D — R be a C* function where D is an open
disc in R? centered at P = (a,b) in R2. Suppose f(P) = 0. Then there
exist C* functions f1, fo : D — R such that

f(z,y) = (z —a)fi(z,y) + (y — b) fa(=, ).

Proof. Assume without loss of generality that P = (0,0). Let (xo, yo)
be any point of the disc. We have

) = Flaniw) = £0.0) = [ Lo, tyo)

r o d
:/o {xoé(mo,tyo)+yoa—£(t$0,tyo)dt]
Lo d
:on %(tl‘o,tyo) dt+y0/a—£(tl‘0,ty0)dt.

Set fi(z,y) = [y (8f/0x)(tz, ty) dt and fo(z,y) = [} (3f /dy)(tz, ty) dt.
Then the functions f;(z,y) and f2(x,y) satisfy the required properties.
This proves the lemma. u]

Now let h(z, y), h(z,y) : D — R be C™ functions, where D is an open
disc in R? centered at the origin. Assume that h(0,0) = %(0,0) =
0. Then by Lemma 6.2 there exist C*° functions h;(z,y), ha(z,y),
ﬁl(mly), ﬁg(w,y) : D — R such that h(z,y) = zhi(z,y) + yha(z,y)
and h(z,y) = zhi(z,y) + yha(z,y).

Lemma 6.3. Let h(z,y), B(x,y) : D — R be C* functions with the
above properties. Assume in addition that

oh Oh
%(Oa 0)) 8_y(0a 0)

(%) det | o o7 £ 0.
%(07 0)) a_y(oa 0)

Then there exists a closed disc D' C D having the property that the
image of the function

H:0D' x I — R?
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given by
H(Qﬁ, Y, t) = (xhl (t.’l?, ty) + yh2(tm7 ty)a Ltill(tﬂﬁ, ty) + yﬁZ(txa ty))

does not contain the origin. (Here OD' is the boundary circle of the
closed disc D', and I denotes the interval [0,1]).

Proof. By (%), there exists a closed disc D’ C D such that the map
A : D' — R? given by

)\(:E, y) = (h(l’, y)7 ﬁ(wa y))
is injective.

We claim that the disc D’ satisfies the property required by the
lemma.

Let (z,y) € OD'. Then, since (z,y) # (0,0), by * we have
H(z,y,0) # (0,0).

Let t # 0 and (z,y) € dD'. We have H(z,y,t) = (1/t)(h(tz, ty), h(tz,
ty)). Now, since X is injective, (h(tz, ty), h(tz, ty)) # (h(0,0),h(0,0)) =
(0,0). Hence, H(z,y,t) # (0,0). This proves the lemma. o

Before turning to the proof of the theorem we first recall the definition
of the degree of a continuous map £ : S' — S'. We also prove a few
lemmas on the degree of continuous maps which are needed in the proof.
Let p : R — S! be the covering projection given by p(t) = e*™®. Let
a :[0,1] — S! be any continuous map such that a(0) = «(1). To «,
we can associate an integer as follows: Let ¢ : [0, 1] — R be continuous
and satisfy pd = a. Then, we associate to «, the integer (1) — 6(0).
This integer does not depend on the choice of the lift §.

Let 3 : S! — S! be any continuous map. We define « : [0,1] — St
by a(t) = B(e?™), We can associate to « an integer N as above. We
say that the degree of 3 is IV.

Let 8 : S' —+ R% — {(0,0)} be any continuous map. We compose 3’
with the map X' : R* — {(0,0)} — S* sending v to v/|[v||. Then, we
obtain a continuous map N3’ : S — S'. We define the degree of 3’ to
be the degree of the continuous map \' 3.

We have the following easy lemma which we state without proof.
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Lemma 6.4. Let 31,32 : S* — R? — {(0,0)} be continuous maps
which are homotopic. Then degree (81) = degree (32).

Now let (a,b) € R, and let D be the disc in R? with center (a,b) and
radius r. Then D (the boundary of D) is homeomorphic to S*. Let
B:0D — R2—{(0,0)} be any continuous map. Then, we can associate
to B3, as above, an integer degree(3). If 81,82 : 0D — R? —{(0,0)} are
two continuous maps which are homotopic, then 81 and B2 have the
same degree.

Lemma 6.5. Let D be an open disc in R? centered at the origin.
Let A : D — R? be a C*™ map such that A\(0,0) = 0. Assume that

Az, y) = (h(z,y), h(z,y)) and

Oh Oh

8—X(0a 0)5 8_Y(0a 0)
det o o =u #0.
8_X(Oa 0)7 6_Y(O’ 0)

Then, there exists a closed disc D' C D centered at the origin satisfying
the property that the image of the restriction of A : 0D’ — R?
does not contain the origin (0,0). Further, the degree of the map
A:0D" — R? —(0,0) is equal to sign (u).

Proof. Let D’ be chosen as in Lemma 6.3. Since degree is homotopy
invariant, we may assume, by applying Lemma 6.3, that h and h are
linear functions. Now, we use the fact that any matrix of determinant
1 is a product of elementary matrices and the homotopy invariance
of degree to prove the lemma in the case where h and h are linear
functions.

Lemma 6.6. Let D be a closed disc in R?>. Let A\ : D — R?
be continuous. Suppose A(z,y) # (0,0) for any (z,y) € 0D. Suppose
further that X is zero at only finitely many points (a1,b1), ... ,(as,bs) €
D. Choose closed discs D; C D centered at (a;,b;) and satisfying
the property that \(z,y) # (0,0) for any (x,y) € D; different from
(a;,b;). Let degree A : 9D — R? — {(0,0)} = N and degree \; : 0D; —
R? - {(0,0)} = N;. Then N =37 | N;.
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We leave the proof of the above lemma to the reader. The proof is
similar to the proof of Green’s theorem in vector calculus for multiply
connected regions.

Now we give another proof of Theorem 4.1.

Theorem 6.7. Let f(X,Y,Z), g(X,Y,Z) € R[X,Y, Z] be such that
(f(X,Y,2),9(X,Y,2), X +Y? + 2% 1) = [ | m
i=1

where m; are real mazimal ideals of R[X,Y, Z]. Let m; correspond to
the point (a;, b;,c;) of S% and

Qs bi’ Ci
det fX(aiabiaci)a fY(aiabiaci)a fZ(a’iabiaci) = U;.
gx (ai, bi, ci), gy (ai,bi,ci), gz(ai, b, c;)

Then y;_, sign (u;) = 0.

Proof. We assume, without loss of generality by performing an or-
thogonal transformation if necessary, that none of the points (a, b;, ¢;)
lie on the equator of the two-sphere S2. (We note that an orthogonal
transformation induces on an automorphism of (R[X, Y, Z])/(X?+Y 2+
Z% — 1) and, using the chain rule, it follows that if the theorem follows
after making an orthogonal transformation then it follows anyway.)

Let D be the disc {(u,v) € R? | u?> +v? < 1}, and let F,G,F',G" :
D — R be defined as follows:

F(’U,,U) f(u,’l}, \% 1—u2—1}2), G(u’v):g(uava V 1—u2—1}2),
F'(u,v) = f(u,v, V1-u2—-22), G'(u,v) = g(u,v, 1-u2—v2).

We consider the maps A, X : D — R? defined as

Au,v) = (F(u,v), G(u,v))
N (u,v) = (F'(u,v), G'(u,v))).

Note that A, X' coincide on 0D (the boundary circle of D).
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By Lemma 6.1, if (a;, b;, ¢;) belongs to the upper hemisphere, the sign

of
fX(aiabiaci)a fY(aiabiaci)a fZ(aiabiaci)
det | gx(ai, bisci), gy(ai,bi,ci), gz(as,bi,ci)
ag, bia Ci

is the same as the sign of

oF oF

——(ai,b;), ——(a;,b;)
S I
%(ai,bi), %(aiabi)

By the same lemma, if (a;, b;, ¢;) belongs to the southern hemisphere,
the sign of

fx(ai bi,ci),  fy(ai,biyci), fz(ai,bi,c;)
det | gx(ai,bi,ci), gy(ai,bi,ci), gz(ai,bi,ci)
ai, b;, c;

is opposite to the sign of

OF' OF'

——(ai,b;), ——(ai,bi)
0
%(ai,bi), W(aiabi)

Now, since the restrictions of A and X to D are equal, the theorem
follows from Lemmas 6.5 and 6.6.

7. On the Euler class group of smooth real curves and
surfaces. In this section, we use surjective homomorphisms from the
Euler class groups of real curves and surfaces to free abelian groups.
We use the classification of one manifolds given in Section 5.

We begin by recalling the definition of the Euler class group of a
curve.

Definition 7.1. Let A be a regular affine domain over a field k£ with
dim A = 1. Let G be the free abelian group on the set of pairs (m, wy,),
where m is a maximal ideal of A and w,, is a generator of m/m?.
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Let H be the subgroup of G generated by ».;_,(m;,wm,) where
(f) = Ni_ymi, (m; distinct) and wyy, is the generator of m;/m? given
by f. We recall that the Euler class group E(A) of A is defined to be
the quotient G/H. o

Now let A= (R[X,Y])/(X?+Y? —1). We define a homomorphism
¢ : E(A) — Z as follows:

Let m be a maximal ideal of A, and let w,, be a generator of m/m?.
If m is complex, we set ¢((m,w,,)) = 0. If m is real and corresponds
to the point (a,b) € S, and w,, is the generator of m/m? given by
F(2,), we set, ¢((m, wm)) = sign (u), where

0 0
u = det <6;((aab)7 6_{,:(aab)> .
b

a,

Thus, we obtain a homomorphism ¢ : G — Z, (where G is as in the
definition of the Euler class group). Imitating the proof of Proposi-
tion 3.2, we see that ¢(H) = 0. Thus, we obtain a homomorphism
¢:E(A)— Z.

More generally, let A = (R[X,Y))/(9(X,Y)) be a regular affine
domain of dimension 1. Let X = Spec A, and let X(R) be the set of
real points of X with the topology on X (R) induced from R?. Suppose
X (R) has t compact path connected components My, M, ... , M;. Let
E(A) = G/H, where G and H are defined as above.

We define a homomorphism ¢ : G — Z! as follows:

Let m be a maximal ideal of A and w,, be a generator of m/m?.
If m is a complex maximal ideal, we set ¢((m,w,,)) = 0. If m is
a real maximal ideal such that the associated real point belongs to
a noncompact connected component of X (R), we set ¢((m,wn,)) = 0.
Let m be a real maximal ideal corresponding to a point (a, b) belonging
to a compact connected component M; of X(R), and let w,, be the
generator of m/m? given by f. Let

af

ox (@0 Gy (@b

det 9 99 = u.
g
ax @V gy (@b
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We set ¢((m,wn)) = (0,0,...,0,1,0,...0), (where 1 is in the ith
place) if u is positive. We set ¢((m,w,,)) = (0,0,...,0,—1,0...,0)
(where —1 is in the ith place) if u is negative. Thus, we obtain a
homomorphism ¢ : G — Z!, (where G is as in the definition of E(A),
ie., E(A) = G/H). Imitating the arguments in Section 5 (see 5.14),
we see that there exists a C! diffeomorphism ¢; : S — M; for every i.
Now, mimicking the arguments used in the proofs of Theorem 5.13 and
Proposition 3.2, we see that ¢(H) = 0. Thus, we obtain the following
theorem which is a one-dimensional version of [2, Proposition 4.12].

Theorem 7.2. Let A = (R[X,Y])/(9(X,Y)) be a regular affine
domain of dimension 1. Let X = Spec A, and suppose that X(R)
has t compact connected components. Then, there exists a surjective
homomorphism ¢ : E(A) — Zt.

We next turn our attention to the Euler class group of surfaces. We
begin by giving a tentative definition of the Euler class group of the
coordinate ring of the two sphere S2. This will motivate the general
definition of the Euler class group of a surface. We have used similar
ideas earlier to define the Euler class group of a curve. So we will not
give all the details.

Let A= (R[X,Y, Z])/(X2+Y?2+Z2%—1). Suppose f,g € A are such
that (f,g) = NI_;m;, where m; are distinct real maximal ideals of A.
Let m; correspond to the point (a;, b;,c;) of S2.

Let
of of of
6_X(aubu(32)a a_Y(alablaCZ)a a_Z(alablaCZ)
u; =det | 9g Og g
6—X(ai,bi,0i), 6—Y(a;,bi,cz’), (’)_Z(ai’bi’ci)
s, iy Ci

Then u; is a nonzero real number, that is, u; is a unit of A/m,.

Definition 7.2. Let A = (R[X,Y,Z])/(X?+ Y2+ 22 —1). Let G
be the free abelian group on the set of pairs (m, u), where m is a real
maximal ideal of A and u € A/m is a unit.

Let (f,g9) = Ni_;ym; be as above, and let u; € A/m; be the unit
constructed above. To (f,g), we associate the element >, (m;, u;)
of G.
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Let H be the subgroup of G generated by the elements which are
constructed in the above manner. We define the Euler class group of
A to be the quotient G/H.

We would like to modify this tentative definition and give a general
definition of the Euler class group of the coordinate ring of a smooth
affine surface. The following considerations, motivate this definition.
Let (a,b, c) be any point of S%. Choose vectors vy = (A11, A12, A\13) and
Vg = ()\21, A2, )\23) such that the matrix

A1, A1z, A
A21, A2z, A3
a, b, c

has determinant 1.

Let
fi= )\11(X - a) + )\12(Y — b) + )\13(2 — C)

f2 = )‘21(X - a) +)\22(Y - b) + )\23(Z — C).

Then, fi, f» generate m/m?, where m is the maximal ideal of A =
(R[X,Y,Z])/(X? +Y? + Z? — 1) corresponding to the point (a,b,c).
Thus, to each real maximal ideal m of A, we can assign an oriented
basis of m/m?, and hence an element w,, = fi A fo of A2m/m?. Let
f,9 € A be such that

(fa g) = ﬂ mg,
=1

and let Y (m;,u;) be the element of G associated to (f,g). Then, a
computation shows that

2
f/\g:uiwmi in /\mi/m?.

Now, we use the above considerations to modify the tentative definition
of the Euler class group of the 2-sphere and give a general definition of
the Euler class group of a surface. (See [1, Section 4, Remark 4.6].)

Definition 7.3. Let A be a regular affine domain over a field k£ with
dim A = 2. Let G be the free abelian group on the set of pairs (m, wy,),
where m is a maximal ideal of A and w,, is a generator of A*m/m?.
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Let H be the subgroup of G generated by elements of the kind
i (mi,wm,;), (m; distinct) where N7_;m; = (f,g), and wy,, is the
generator of /\Qmi/mz2 given by f/\ g.

We define the Euler class group of A denoted by E(A) to be the
quotient G/H. Let A = (R[X,Y, Z])/(X?+Y?+ Z? — 1). We define
a homomorphism ¢ : E(A) — Z as follows:

Let m be a maximal ideal of A, and let w,, be a generator of A2m/m?.
If m is complex, we set ¢((m,wy,)) = 0. Let m be a real maximal ideal
of A corresponding to the point (a, b, c) € S?, and let w,, be a generator
of A2/m/m? given by f A g, where f, g generate m/m?. Let

of of of

a_X(aaba C)’ a_Y(aaba C)v 6_Z(a7b7 C)
a_X(aaba C)’ a_Y(C;’ ba C)v 6_Z(a7b7 C)
a, , c

We set ¢((m,w,,)) = sign (u) € Z. Thus, we obtain a homomorphism
¢ : G — Z, (where G is as in the definition of the Euler class
group). By Theorem 5.13, we have ¢(H) = 0. (Note that in Theorem
5.13, there is no mention of complex maximal ideals but the same
argument applies.) Thus, we obtain a surjection ¢ : E(A) — Z, where
A= (R[X,Y,Z])/(X?+ Y%+ Z2 —1). It can be shown that ¢ is an
isomorphism. (See [2, Remark 5.8].)

More generally, let A = (R[X,Y, Z])/(h(X,Y, Z)) be a regular affine
domain of dimension 2. Let X = Spec A and assume that X (R) has ¢
compact path connected components My, ..., M;. Let E(A) = G/H,
where G and H are defined as above. We define a homomorphism
¢: G — Z! as follows:

Let m be a maximal ideal of A and w,, be a generator of A2m/m2.
If m is a complex maximal ideal, we set ¢((m,wy,)) = 0. If m is a
real maximal ideal such that the associated real point belongs to a

noncompact connected component of X (R), of A we set ¢((m,wy,)) =
0.

Let m be a real maximal ideal corresponding to a point (a,b,c)
belonging to a compact connected component M; of X(R), and let
Wy be a generator of A2m/m? given by f A g, where f, g € m generate
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m/m?. Let
of of of
%—X(a,b, ¢), %—Y(a,b, c), %—Z(a,b, c)
—det | 29 99 99
u € %% (a)b7 C)’ %},;' (a’b7 C), %%(G’?b’ C)
a—X(a,b, c), 8_Y(a’b’ c), 8—Z(a,b, c)

We set ¢((m,wr,)) = (0,0,...,0,1,0,...,0), (where the 1 is in the ith
place) if u is positive. We set ¢((m,w,)) = (0,0,...,0,—1,0,...,0),
(where the —1 is in the ith place) if w is negative. Thus, we obtain
a homomorphism ¢ : G — Z!. Using Corollary 2.3 and an argument
similar to the proof of Theorem 5.13, we see that ¢(H) = 0. Thus, we
obtain the following.

Theorem 7.4. Let A= (R[X,Y, Z])/(h(X,Y, Z)) be a regular affine
domain of dimension 2. Let X = Spec A, and suppose that X (R)
has t compact connected components. Then there exists a surjective
homomorphism ¢ : E(A) — Z*.

Now we state the general definition of the Euler class group of an
n-dimensional variety given in [1, Section 4, Remark 4.6].

Definition 7.5. Let A be a regular affine domain over an infinite
field k with dim A = n. Let G be the free abelian group on the set of
pairs (m, wy,), where m is a maximal ideal of A and w,, is a generator
of A"m/m?. Let H be the subgroup of G generated by elements of the
kind Y., (mi,wm;) (m; distinct), where NI_;m; = (f1,...,f,) and
W, is the generator of A"m;/m? given by fi A fa A--- A f,. We define
the Euler class group of A denoted by E(A) to be the quotient G/H.

Using Corollary 2.3 and the method of proof of Theorem 5.13, we can
prove the following theorem which is a special case of [2, Proposition
4.12).

Theorem 7.6. Let A = (R[Xl, Xg, N ,Xn+1])/(h(X1, SN ,Xn+1))
be a regular affine domain over R of dimension n. Let X = Spec A,
and assume that X (R) has t compact connected components. Then
there exists a surjective homomorphism ¢ : E(A) — Z*.



REAL VARIETIES AND TOPOLOGY RELATIONS 277

8. The Euler class of an oriented projective module. In this
section, we relate the Euler class of a rank 2 oriented projective module
over the coordinate ring of the two sphere to the “degree” of a certain
continuous map S — SLy(R).

We begin by recalling how the degree of a continuous map [ :
St — R? — {(0,0)} is defined. We compose 3 with the map A :
R%-{(0,0)} — S! sending v € R% — {(0,0)} to v/|[v]||, thus obtaining
amap A3 :S' — S1. We recall that the degree(f3) is defined to be the
degree(A\3).

Let a : S1 — SLy(R) be continuous. We consider the map X :
SLy(R) — R% — {(0,0)}, sending any element of SLs(R) to its first
row. Composing o with A we obtain a continuous map Aa : S' —
R? — {(0,0)}. We define the degree of a to be degree(\a).

We recall that the Gram-Schmidt orthogonalization process gives us
a continuous retraction p : SLy(R) — SO2(R). We recall how this
retraction is constructed.

Any matrix belonging to SLs(R) consists of a pair of linearly in-
dependent column vectors (v,w). We first choose A\ € R so that
the dot product w - (v — Aw) = 0. Let v7 = v — Aw. We set
p((v,w)) = (v1/||v1]], w/||wl]]). We record the following lemma which
follows easily from the Gram-Schmidt process.

Lemma 8.1. There ezists a continuous map H : SLy(R) x I —
GL3(R) such that H(0,0) = o, and H(o,1) = p(o) for every o €
SLy(R).

Lemma 8.2. Let uy = (f1,f2) : St — R% — {(0,0)} and pp =
(91,92) : S* — R? — {(0,0)} be continuous. Suppose there exists a
continuous map o : S* — SLy(R) such that

fl(aab) _ gl(avb)
@ (hen) = (o)
for all (a,b) € S1. Then deg (1) — deg (u2) = deg (o).

Proof. We may by the previous lemma replace o by a map homotopic
to o and assume that the image of o is contained in SO3(R). We may
also replace pu; by a homotopic map and assume that the image of u;



278 RAJA SRIDHARAN

is contained in S'. Now, note that the following identity holds

cosf, sinf cosg\ [ cos(¢p—0)
—sinf, cosf sing /]~ \sin(¢p—0) ) °
The lemma now follows from the fact that if 8,82 : S — S! are

continuous maps and if By - B : St — S* sends z € S* to B1(z) - B2(2),
then deg (8 - B2) = deg (B1) + deg (Be). =

We next turn to the definition of the Euler class of an oriented
projective module given in [1, Section 4].

Before doing this, we recall the definition of the Euler class group
E(A) of A.

Definition 8.3. Let A be a regular affine domain over an infinite
perfect field. Let G be the free abelian group on the set of pairs (m, wy, ),
where m is a maximal ideal of A and w,, is an orientation of m (that
is a generator of A"m/m?).

Let H be the subgroup of G generated by >.._, (mi,wy,,), where
(fi,---, fn) = Ni_ym; (m; distinct) and wyy,, is the orientation of m;
given by fi A--- A f,. We recall that the Euler class group E(A) of A
is defined to be the quotient G/H. O

Let P be a projective A-module of rank n and trivial determinant. A
generator of A" P (or equivalently an isomorphism A = A™P) is called
an orientation of P. An oriented projective module P of rank n is a
projective module P of rank n and trivial determinant together with
an orientation of P.

Let P be an oriented projective A-module of rank n, and let X be an
orientation of P (that is, X is a generator of A" P). To the pair (P, X),
we assign an element of E(A), as follows: Let o : P — N{_;m; be
a generic surjection (where the m; are distinct maximal ideals of A).
(See subsection 2.5). Then, we have an isomorphism

A" (@) : A"P/m;P =% N"m;/m?.

The image of the orientation X under the isomorphism A™(@) is an
orientation w,,, of m; (that is, a generator of A"m,;/m?).
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We assign to the pair (P, X) the element Y _;_, (m;,wnm,) of E(A). The
“oriented cycle” Y7_, (m;,wnm,) is called the Euler class of the oriented
projective module (P,X). The Euler class of an oriented projective
module (P, X) does not depend upon the choice of the generic surjection
« and is denoted by e(P, X). (See [1] for details and proofs.)

Now, let A = (R[X,Y,Z])/(X?*+Y?+ Z% — 1), and let P be a
projective module of rank 2. Since Pic A is trivial, the determinant of
P is trivial and P can be oriented. Let X : A = A%P be an isomorphism
defining an orientation of P.

Since vector bundles over the affine plane are trivial, one can easily
show, using stereographic projection, that the projective A,_; module
P, _; and the projective A, module P,,; are both free of rank 2.

We choose isomorphism 3; : A2, 5 P,y and B : A2 | = P,
such that

A2B; = x and AZ 3y =X.
We would like to describe the Euler class of the oriented projective
module (P, X) in terms of this data.

Let o : P — N$_;m; be a surjection where m; are (distinct) maximal
ideals of A. Let e; = (1,0) and ez = (0,1). Let

abi(er) = f1,  aBi(e2) = f2

aBa(e1) = fa, aBa(ez) = ga-
Let us consider the maximal ideals my,... ,m,. If z+1 ¢ m;, then
fi A f2 is an orientation wy,, of m;. If z —1 ¢ m;, then g1 A g2 is an
orientation wy,; of m;. If (z —1)(z +1) ¢ my, then since A*8; = X and
A2?B3 = X, we have the orientations of m; given by f1 A f2 and g1 A o
are the same. One can verify that e(P,X) = >.;_; (m;, wm,)-

Let A= (R[X,Y,Z])/(X?+Y?+ Z? - 1) and (P, X) be an oriented
rank 2 projective module as above. We choose as above isomorphisms
Bi: A2, 5 P,y and By 1 A2, = P, such that A?8; = X and
A2By = X. Let 7= B, € SLa(Az—1)(z+1)) Let S1 be the equator
of the two sphere, that is,

St = {(a,b,0)| a*+b* =1}
Then, we have a continuous map S! — SL2(R) induced by 7. We

continue to denote this map by 7. Let ¢ : E(A) — Z be the
homomorphism defined in Section 7. With the above notation we have
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Theorem 8.4. ¢(e(P, X)) = degree (7).

The proof of this theorem is similar to the proof of Theorem 6.7.
There, we proved that ¢(A% X) = 0 = degree(r), where 7 is the
continuous map S* — SLy(R) which sends every element S* to the
identity matrix.

The above theorem can be viewed as a generalization and its proof is
similar. Therefore, we do not give all the details.

Proof of the Theorem. We choose a surjection a : P — N;_;m; such
that none of the points corresponding to m; lie on the equator. (See
the following lemma.) Also, we assume for simplicity that all the m;
are real. Let ey = (1,0) and e = (0,1). Let N{_;m; = J. We have
surjections

aﬁl : A§+1 > Jz-‘,—l
and

0[,62 : A§_1 —_— Jz_l.
Let
afi(er) = f1, afi(e2) = fo
afz(er) = g1, afs2(e2) = go.

Then, we have
S

6(P, X) = Z(miawmi)a
i=1
where w,,, is the orientation of m; given by fi A fa or g1 A ga depending
on whether the point corresponding to m; is different from (0,0, —1)
or (0,0,1).
Assume that the points corresponding to the maximal ideals my, ... ,
m, lie on the upper hemisphere of the two sphere and the points

corresponding to m,41,...,ms lie in the lower hemisphere. For 1 <
1 <r,let
of1 of1 of1
6—X(aub1502)a a_Y(alablacl)a 8_Z(a27b27cl)
u; = det 0fe 0fs 0f2 ’
ax @b c), Fo(aibi ), S (aibisc)

a;, b;, c;
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where (a;, b;,c;) is the point of S? corresponding to m;. For r + 1 <
1< s, let

991 dg1 g,
6—X(azabzacz)7 6_Y(azabzacz), 8_Z(a“b“cl)
u; = det ’
%(aiabiaci)a %(ag,bi,ci)’ %(ai,bi,ci)
@is (2] C;

where (a;, b;,c;) is the point of S? corresponding to m,;. We see that
¢(e(P, X)) = 327, sign (ui).
Now, let o = BIIﬂQ € SLz(A(Z,l)(ZJrl)). Then,

" (7)-(0):

We have a continuous map S! — SLy(R) induced by o7. We continue
to denote this map by o7. Now, using Lemma 8.2 and an argument
similar to Theorem 6.7, we see that ¢(e(P,X)) = deg(cl). It is easy
to see using the Gram-Schmidt process that degree(c?) = —deg (o).
Thus, ¢(e(P, X)) = —degree (o).

Let 7 = 328;* and 7 : S* — SLy(R) be the induced continuous
map. Since 0 = 5185 L — 7=1 it follows easily using the Gram-Schmidt
process that degree (1) = —degree (o). Hence, ¢(e(P, X)) = degree (7).
This proves the theorem. ]

We now prove a lemma that was used in the proof of the previous
theorem.

Lemma 8.5. Let A = (R[X,Y,Z])/(X?2+Y?2+ Z2 — 1) and P
be a projective A-module of rank 2. Then, there exists a surjection
o : P = N_;m; such that none of the points corresponding to the
maximal tdeals m;, lie on the equator.

Proof. Since the determinant of P is trivial, the determinant of the
(A/zA)-module (P/zP) is trivial. Since (A/24) = (R[X,Y])/(X?% +
Y? — 1) is a Dedekind domain, the module (P/zP) is free of rank 2.
Therefore, we can choose a surjection

— A
3 P

P zA’
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We lift 3 to a linear map 3 : P — A. We then have §(P) + zA = A.

By Swan’s Bertini theorem (2.6), we can choose a linear map 8’ : P —
A such that a = 8 + 2z’ satisfies the property that a(P) = N{_;m,.
Further, since 3(P)+2zA = A, we have a(P)+ zA = A. Hence, none of
the points corresponding to the maximal ideals m; lie on the equator.
Hence the lemma is proved. ]

Remark 8.6. Let A be the ring of polynomial functions on a smooth
real orientable variety X of dimension n. Let P be a projectiveA-
module of rank n and trivial determinant, and let X be an orientation
of P. Then (as in subsection 8.4) one can define an element ¢(e(P, X)),
whose image lands in H"(X(R),Z). This element is simply the Euler
class of the topological vector bundle associated to P.

9. Some examples.

Example 1. The Hopf bundle. Let A = (R[X,Y, Z])/(X?+Y?+
Z% — 1), and let m be a maximal ideal of A corresponding to a real
point. It is well known and follows from Theorem 4.1 that m is not
generated by two elements.

We begin this section by giving an alternative simple proof in the
spirit of this paper of this fact. The proof uses the following lemma
which is of independent interest (see [3, Lemma 2.3]).

Lemma 9.1. Let A be a ring. Let J = (f,g9) C A be an ideal.
Suppose J = (f',g"). Suppose, further, that there exists a matriz

_ [ A1, Are
a_<)\21, >\22>

in My(A) such that det (o)) = 1 modulo J and

()-(0)

Then there exists a matriz 8 € SLa(A) such that 8 = a modulo J and

()-(0)
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Proof. Let det (&) =1+ h, h € J.

Let
_ <)\11+Cg, >\12—Cf>
Ao1 +dg, Aso —df

where ¢, d € A will be chosen later. Then 8 = a modulo J and
)= (0
s(2)=(1):
!
()= ()
g g

it follows by an easy computation that det (3) = 1+ h + cg’ — df’.
Now, since J = (f’,¢') and h € J, we can choose ¢,d € A so that
h = df’' — cg’. With the above choice of ¢,d we have det (8) = 1. This
proves the lemma.

Using the fact that

Theorem 9.2. Let A = (R[X,Y,Z])/(X?+Y?+ 2% —1). Letm
be a mazimal ideal of A corresponding to a real point. Then m is not
generated by 2 elements.

Proof. Without loss of generality, we may assume that m = (z,y, z —
1). Since (z +1)(z — 1) € (z,y) and z + 1 ¢ m, it follows that
(z,y) + m? = m. Since (2 +1)(z — 1) € (z,y), it also follows that

mai1 = (7,y).
Since z — 1 € m, it follows that
m,_1 = (1,0).
Since 22 + y2 = 1 — 22, it follows that
o= (5 )

belongs to SLQ(A(Z_])(ZJ’_])) and
.

(o)
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Now, assume to the contrary that m is generated by two elements f, g.
We will derive a contradiction.

Since m = (f,g), we have (f,g) + m> = m and f,7 is a basis of
the A/m-vector space m/m?. Since 7,y also form a basis of m/m?,
it follows that there exists an element 7 belonging to GLy(A/m) =
GL3(R) such that

1))
* (1 )=(2).
) (D-(
Let det (1) = A € R*. Replacing the set of generators (f,g) of m by
(Af,g), we may assume that 7 € SLy(A/m) and satisfies *.

Since m,y1 = (z,y) = (f,g), it follows now from Lemma 9.1 that
there exists a 7, belonging to SLs(A, 1) such that

n(5)=():
g Y
Now, since z—1 €m, m,_ 1 = A, 1 = (f,9) = (1,0). It follows that
there exists an element 7 belonging to SL2(A,_1) such that

-0
()

Therefore, we have

Since
o 1\ (=
0/ \y)’
we have
1 -1 1 1
2 olg) =10
Therefore,

et = (é i) —n,

where A € A(,_1)(z41)- We have o = 1y 7p73.
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Let W = §2 — {(0,0,1), (0,0, *1)} Since o € SL2(A(Z—1)(z+1))a (o4
gives rise in a natural way to a map which we continue to denote by
o: W — SLy(R). Let S' be the equator of S? that is

S ={(a,b,0) | a® + b* = 1}.
Restricting o to the equator we obtain o : S' — SL(R) given by

cosb, —sin0>

o(cosf,sinh,0) = <sin9 cosf

Let V = 5% — {(0,0,—1)}. Since 71 € SLy(A,+1), we obtain as above
a continuous map

T:V — SLZ(R)

Since V is contractible, it follows that 7 is homotopic to the constant
map.

Let U = S?—{(0,0,1)}. Since 72 € SL2(A, 1), we have a continuous
map 7> : U — SLy(R) which is also homotopic to a constant.
Therefore, the restrictions of 7, and 7 to S! are homotopic to constant

maps.
(1 A
T3 - O 1 Y

We recall that
where A € A(,_1)(.4+1)- We obtain a continuous map
3: W — SLQ(R),
where W =UNYV.

The restriction of 73 to S*, 73 : S' — SL,(R) is homotopic to a
constant map, the homotopy given by the map

St x I — SLy(R)
sending ((cos#,sin,0),t) to

( 1, A(cosb,sinf,0)t >
0, ’

1

Therefore, the continuous map

T17T273 : Sl — SLQ(R)
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is homotopic to a constant map. Since 77973 = o, we have the map
o: 8" — SLy(R)
given by
o(cosb,sinf,0) = cosd, —sinf
’ >/ 7\ sinf, cosf

is homotopic to a constant. This is a contradiction since ¢ has degree 1.
Therefore, m is not generated by two elements. ]

Remark 9.3. Let A = (R[X,Y,Z])/(X?+ Y2+ Z2 — 1), and let
m C A be a maximal ideal corresponding to a real point of S?. Then
there exists an A-linear surjection P —— m, where P is a projective
A-module of rank 2. The projective A-module with the above property
is determined uniquely into isomorphism and is called the Hopf bundle.
Since m is not generated by 2 elements, the Hopf bundle is not trivial.
If X is an orientation of P (that is a generator of A2P), then the value of
e(P,X) € E(A) = Zis +1 or —1 (depending on the choice of orientation
of P). This gives another proof of the fact that m is not generated by
2 elements. In fact, for any orientation w,, of m, p(m,w,,) = £1, and
if m is generated by 2 elements then p(m,wy,,) = 0.

Example 2. The tangent bundle of the two sphere. We
consider the classical example of the tangent bundle of the two sphere
and use the methods of this paper to show that it is nontrivial. We
begin with some preliminaries.

Definition 9.4. Let A be a commutative ring with unity. A row
[a1,...,a,] € A™ is said to be unimodular (of length n) if there exist
elements b1, ... ,b, € A such that a;b; + asbs + -+ + a,b, = 1.

The set of unimodular rows of length n (with entries in A) is denoted
by Um,,(A).

The groups GL,(A), SL,(A) and E,(A) act on Umy(A). If a matrix

0 € GL,(A) transforms [a1,... ,an] € Um,(A) to [b,...,b,], we say
that [ag,... ’a”]Gf;(/A)[bl’ ey bl

The relation GIoTA) is an equivalence relation on the set Um,,(A).
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Similarly, one can define the equivalence relations —— and

SLa(4) © Ba(A)
on Umy, (A).
Example 9.5. Let A be as above. Let [a1,... ,a,] € Um,(A). Then

[a1,...,a ]E (A)[al + Aoag, ... + Apan, ag, ... ,an].

Let A be as above and [ay,... ,a,] € Um,(A). Then the A-module
P = A"/lay,...,ay] is projective of rank n — 1.

The following lemma is standard and easy to prove.

Lemma 9.6. Let A be as above, and let [ay,...,a,] € A™ be
unimodular. Then the following are equivalent:

(i) [a1,- .. ,an] is the first row of a matriz belonging to SL,(A).
(ii) [a1,... ,ay] is the ﬁrst row of a matriz belonging to GL,(A).
(111) [ala ) an]G [ ’ O]

(IV) [afla aan]SL (A) [ 70]
(v) The projective module P = A™ /a1, ... ,ay] is free of rank n— 1.

Theorem 9.7. Let A = (R[X,Y,Z])/(X?+Y?+ 22 —1). Then
(x,y,2) € Umg(A), but there does not exist a matriz in SLs(A) having
first row (z,y, 2).

Proof. Since z% + y? + 2% = 1, (z,y,2) € Um3(A). Since (z,y,2) €
Ums(A), and z — 1 is a unit of A,_1, (2(z — 1),z,y) € Ums(A4._1).
Adding 2% + y? to 2(z — 1), we get
(Z(Z - 1)7 m’y)Eaa:l)(l - z,x,y).

Therefore,

(Zaxay)GLaf(Zil)(z(zi 1)7 ’y)Eg( A, 1)( Z’l"y)E;;(A )(1 0 0)
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The last equivalence follows since 1 — z is a unit of A,_;. We thus
obtain the following explicit completion of the row (z,z,y) viz.

x -y
S L |
o= z, Z_]_, 0 S SLg(Azfl).
Ys 0, 1

Similarly, we obtain the matrix

—r -y
Z’ ?

r=1. TP FE | ests(a).
y, 0 1

Now, suppose to the contrary that 8 € SL3(A) has first column
(z,2,y). Since o and 7 both have (z,z,y) as the first column,

*

1 =
o lr=10 « ,
0

where o € SLa(A,_1)(z41))- Now, ot = o718 - B~ 17. Now, since
the first column of 8 is (z, z,y),

1 % *
0'_15 = 0 a1 ,
0
where ay € SLy(A,—1) and
1 * %
Blr=(0 a ,
0

where as € SLy(A,+1). Since 0717 = 07138717, we have a = ajas.
Let U = S? — {(1,0,0)}, V = §? — {(0,0,1)}.
Since a € SL3(Az—1)(241)), @1 € SL3(A. 1) and ap € SL3(A. 1),
we have continuous maps
a:UNV — SLy(R)
aq U— SLz(R)
Qa9 V — SLQ(R)
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Since U and V are contractible, the restrictions of a; and as to the
equator of the two sphere are homotopic to constant maps. Since
a = a1 - ag, we deduce that the restriction of o to the equator
is homotopic to a constant map. We will show that this yields a
contradiction. Since

1, =, =
clr=10, « ,
0,

an explicit computation shows that the restriction of o to the equator
is given by the map a : S — SLy(R) defined as follows:

. ([ cos(20), —sin(26)

a(cosf,sinf,0) = (sin(20), cos(28) )"

The map « has degree —2 and hence is not homotopic to a constant.
This is a contradiction and proves that the unimodular row (z,y, z) €
A3 is not completable to a matrix belonging to SL3(A). O

Corollary 9.8. Let A = (R[X,Y,Z])/(X?2+Y?+ Z? —1). Let
P = A®/(x,y,2z). Then P is projective A-module of rank 2 but not
free.

Remark 9.9. We can give another proof of Corollary 9.8 in the
following manner. Let P = A3/(x,y,z). Let e; denote the images
in P of the standard basis elements in A3. Then X = zes A e3 + yes A
e1+ ze1 A ey is a generator of A2P. Let s : P — A be the A-linear map
defined by s(e1) = 0,s(e2) = Z,s(e3) = —y. Then we compute the
Euler class of (P, X) using s to be the image of the element z(y A z) of
E(A) A computation shows that ¢(e(P, X)) is the integer 2. Therefore,
P cannot be free, otherwise p(e(P, X)) = 0.

10. On nonreduced oriented zero cycles. Let A = (R[X,Y, Z])/
(h(X,Y,Z)) be a regular affine domain of dimension 2 over R. Let
X = Spec A, and suppose that X (R) has ¢t compact connected com-
ponents My, ..., M;. We recall that in Section 7 we have defined a
homomorphism ¢ : E(A) — Zt. We recall how ¢ is defined. If m is
a complex maximal ideal of A, we set ¢((m,wy,)) = 0. If m is a real
maximal ideal of A such that the associated real point belongs to a
noncompact connected component of X (R), we set ¢(m,w,,) = 0.
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Let m be a real maximal ideal of A corresponding to a point (a, b, c)
belonging to a compact connected component M; of X (R), and let w,,
be a generator of A?m/m? given by f A g, where f,§ generate m/m?.
Let

0 0 0
ajf((a b, c), 6}Jj(a b,c), 62((1 b, c)
dg 0

u = det 6X(a b,c), 8Y(a b, c), 6g(a b, c)
Oh Oh Oh
aX(abc) ay(abc) 6Z(abc)

We set ¢((m,wy)) = (0,0,...,0,1,0,...,0), (where 1 is in the ith
place) if w is positive. We set ¢((m,w,,)) = (0,0,...,0,—1,0,...,0),
(where —1 is in the ith place) if u is negative. Thus, we obtain a
homomorphism ¢ : E(A4) — Z*.

More generally, let J C A be an ideal of height 2 which is not
necessarily reduced such that J/J? is generated by two elements f. g,
and let w; be the “orientation of J” (that is, the generator of A2J/J?)
given by f A g. To the pair (J,w;), we assign an element of Z! as
follows:

By Theorem 2.7 we can choose lifts f,g of f,§ which satisfy the
property that (f,g) = JNJ', where either J' = Aor J' =m;N---Nm,.,
where m; are distinct maximal ideals of A satisfying m; + J = A,
1 <i<r. IfJ = A set ¢(J,wy) = 0; otherwise, we define
o((J,wy)) = —> ¢((mi,wm,)), where w,,, is the orientation of m;
given by f A g. The function ¢ is well defined. (See [1, Remark 4.16]
for details.) We have

Theorem 10.1. Let A = (R[X,Y,Z])/(h(X,Y,Z)) be a regular
affine domain over R of dimension 2. Let X = Spec A, and suppose
that X(R) has t compact connected components say My, ... ,M;. Let
m C A be a mazimal ideal such that the associated real point belongs to
the compact connected component M. Let J C A be an m primary ideal

such that J/J? is generated by 2 elements, and let wy be a generator

of N2J/J?. Then ¢(J,wy) = (b,0,...,0) for some integer b € Z.
Proof. We only give a sketch, as the proof is similar to that of

Theorem 5.13. Let wy = f A g, where f,g generate J/J?. We

choose by Theorem 2.7 lifts f, g of f,§ which satisfy the property that
(f,9)=JNmiN---Nm,, where m; + J=A,1 <i<r.
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Replacing f by f+\g, we may assume that by Swan’s Bertini theorem
2.4, that dim A/f = 1 and that (A/f)~ is regular for every maximal
ideal m of A containing f different from m.

Let A = (R[X,Y, Z)/(f(X,Y,Z),h(X,Y,Z)) and X' = Spec A’. By
assumption, A;% is regular for every maximal ideal m of A’ different
from m. Now, X'(R) is a union of connected components. Some of
these are contained in M;. The rest are contained in My U -+ U M;.
Suppose M is a connected component of X'(R) which is not contained
in M;. Since the real point corresponding to m belongs to My, and A’
is locally regular at every maximal ideal different from m, it follows by
the methods of Section 5 that M is diffeomorphic to S*.

Now, suppose that amongst the maximal ideals my,...,m,, the
points corresponding to mq,...,m, belong to M. Let m; correspond
to the point (a;, b;,¢;), and let

af af af

8—X(ai7biyci)7 8—Y(a¢,bi,cz‘), a—Z(ai;bi;Ci)
1s] 1s] Is]

u; = det %(aubi,ci)y %(ai,bivci), é(aiybiyci)
oh oh oh
8—X(ai,bz',cz'), 8_Y(ai7biaci)7 8—Z(ai,bmci)

Now, by imitating the proof of Theorem 5.13, it follows that

q
Z sign (u;) = 0.
i=1

Arguing as above, it follows easily that ¢(J,wy)) = (b,0,...,0) for
some integer b. ]

The proof of the following theorem is quite similar to that of Theorem
10.1. We omit the proof.

Theorem 10.2. Let A = (R[X,Y, Z])/(h(X,Y,Z)) be a regular
affine domain of dimension 2. Let X = Spec A, and suppose that X (r)
has t compact connected components. Let m C A be a mazimal ideal
such that the associated real point belongs to a moncompact connected
component of X(R). Let J C A be an m-primary ideal such that J/J*



292 RAJA SRIDHARAN

is generated by two elements, and let wy be a generator of N2J/J?.

Then we have ¢((J,wys)) = (0,0,...,0,0) € Z*.

Remark 10.3. More generally, we can prove analogous results in
the case where A = (R[X1,...,Xn41])/(h(X1,...,Xp41)) is an n-
dimensional regular affine domain over R.

Remark 10.4. The results of this section were obtained previously
by Bhatwadekar and the author (unpublished). We proved versions of
these results where A is an n-dimensional regular affine domain over R
such that K 4 ~ A. The proofs given here are a little different.

11. A question. Let A be a regular affine domain over an infinite
perfect field k£ with dim A = 2. Let f,g € A be nonzero elements such
that the ideal (f,g) = A. Let 0 € SLy(Ayg). Then, as in the clutching
construction of vector bundles we can associate to o, a rank 2 projective
A-module by patching the free Ay-module A? and the free A -module
Ag via the cocycle 0. Further, since 0 € SLy(Ayg), the generators
e; Aeg of /\QA?c and /\2A3 patch to yield a generator X of A?P.

With the above notation we have the following question which is
motivated by results in Section 8.

Question. Is the map ¢ : SLy(Ayfg) — E(A) sending o € SLa(Ayy)
to e(P,X) (the Euler class of the oriented projective module P) a
homomorphism?
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