Instructional School for Teachers (IST) on "Principles of Continuum Mechanics"

Period: June 03-15, 2024 (Two Weeks)

Venue: Department of Mathematics, J.C. Bose University of Science & Technology, YMCA, Faridabad-121006, Haryana.

Name of Organizers/ Conveners:

1. Prof. Neetu Gupta

Chairperson & Dean Sciences

Department of Mathematics

J.C. Bose University of Science & Technology, YMCA

Faridabad-1210 06, Haryana Phone: +91 9953505828

Email: neetuymca@yahoo.co.in

2. Dr. Suraj Goyal

Assistant Professor

Department of Mathematics

J.C. Bose University of Science & Technology, YMCA

Faridabad-1210 06, Haryana Phone: +91 9417728292

Email: surajgoyal87@jcboseust.ac.in

Speakers:

- I. Prof. S. K. Tomar, Professor, Department of Mathematics, Panjab University, Chandigarh (Presently: Vice Chancellor, J. C. Bose University of Science and Technology, YMCA, Faridabad, Haryana).
- II. Prof. Peeyush Chandra (Rtd), Department of Mathematics, IIT Kanpur.
- III. Prof. Gopal Chandra Shit, Department of Mathematics, Jadavpur University, Kolkata.
- IV. Dr. S. C. Martha, Associate Professor, Department of Mathematics, IIT Ropar.
- V. Dr. Jitender Singh, Associate Professor, Department of Mathematics, Guru Nanak Dev University, Amritsar.
- VI. Dr. Santanu Manna, Associate Professor, Department of Mathematics, IIT Indore

Tutors:

- I. Dr. Dilbag Singh, Assistant Professor, Department of Mathematics, Panjab University, Chandigarh.
- II. Dr. Jai Bhagwan, Assistant Professor, Department of Mathematics, Government College, Panipat, Haryana.
- III. Dr. Manjeet Kumar, Assistant Professor, Department of Mathematics, Dr B R Ambedkar Government College, Dabwali, Haryana.
- IV. Dr. Suraj Kumar, Assistant Professor, Department of Mathematics, Punjab Engineering College (Deemed to be University), Chandigarh.

Detailed Syllabus:

Name of the	Number	Syllabus
Speaker	of	
	Lectures	
Prof. S. K.	6	Elasticity and Wave Propagation
Tomar		Basic concepts of theory of elasticity: stress, strain and their
		properties, Hooke's law and its generalization, symmetry of

	1						
		stress tensor, equation of equilibrium and motion, compatibility conditions, Finite deformation; Waves in uniform elastic medium, Helmholtz decomposition of vector, body waves, boundary conditions, reflections/refraction phenomena; Surface waves - Rayleigh, Love and stoneley.					
Prof.	6						
Peeyush Chandra	O	Fundamental Principles Eulerian and Lagrangian coordinate systems, stress-strain tensors and their properties, Polar Decomposition theorem, governing differential equations of continuum mechanics, conservation laws for the mass, linear momentum, angular momentum, energy, first and second laws of thermodynamics for a continuum, equations of state, boundary conditions, fundamental restrictions on constitutive laws.					
Prof. Gopal	6	Computational Fluid Dynamics (CFD)					
Chandra Shit		Computational Fluid Dynamics (CFD)					
Chandra Shit		Need of CFD as tool, role in R&D, CFD Applications.					
		Concept of Finite Difference, Finite difference discretization, Convergence, Consistency, and Stability, Boundary conditions, CFD model formulation, Tridiagonal linear system of equations solver (TDMA/ Thomas Algorithm).					
		Two time-level explicit scheme (Schmidt formula), Crank-Nicolson Implicit scheme and their von-Neumann stability analysis. Solution of one-dimensional wave equation using the Lax scheme, Lax-Wendroff Scheme and their von-Neumann stability analysis, CFL number. Second order wave equation using explicit method and its von-Neumann stability. Five point formula, Point-Gauss-Seidel and Line Gauss-Seidel method, Point and line Successive over/under relaxation method for Laplace and Poisson equations. Vorticity – Stream function formulation.					
		MATALB program for Direct Numerical Solution of lid-driven cavity problem, Flow over a Backward-facing step problem. Graphical representation and validation of computational results. Basic concepts of the finite element methods for the solution of fluid dynamics problems.					
Dr S. C.	6	Problems of Water Wave Mechanics					
Martha		Sturm-Liouville problem, Boundary value problem for two-dimensional periodic water wave, eigenfunction solutions of linearized water wave boundary value problem, approximate solution of dispersion equation by Newton-Raphson method with MATLAB program. Least square method and its applications to water wave problems, energy balance equation using Green's identity. Boundary element method (BEM), numerical implementation through MATLAB code, BEM applications to water wave problems. Fredholm integral equations of second kind and its numerical solution and MATLAB applications, integral equation method for solving a problem on wave mechanics.					
Dr Jitender	6	Some Hydrodynamical Problems					
Singh		, ,					

		Hydrodynamics of Rayleigh-Benard convection and Couette-Taylor problem, the mathematics of Boundary layer flows such as the stretching sheet problem. Numerical methods for hydrodynamic and the flow problems. Shooting method, the method of matrix exponentials, homotopy perturbation technique					
Dr Santanu Manna	6	Some Non-Elasticity Problems Mohr's circle diagram: principal stress & strain, Equations of					
		deformation and equilibrium, combability etc.					
		Concept of nonlocal elasticity: dynamic equation of motion, waves of dilatation and distortion, body wave & surface wave, concept of damping and meta-surface.					
		Asymptotic analysis for elasticity problem, explicit models for surface waves, Bleustein-Gulyaev surface waves, comparison of asymptotic approach and analytical approach, hyperbolic-elliptic model of surface wave field.					

Time Table*:

Day	Date	L-1	10:30-	L-2	12:30-	L-3	3:30-	Discussion/
	(June	(9:00-	11:00	(11:00-	2:00	(2:00-	4:00	Tutorial
	2024)	10:30)		12:30)		3:30)		(4:00-5:00)
Mon	3 rd	SKT		PC		PC		SKT, DS, SK
Tue	4 th	SKT		PC		PC		PC, DS, SK
Wed	5 th	SKT		PC		PC		PC, DS, SK
Thu	6 th	SKT		SCM		SCM		SKT, DS, SK
Fri	7^{th}	SKT		SCM		SCM		SCM, DS, SK
Sat	8 th	SKT	Tea/	SCM	Lunch	SCM	Tea/	SCM, DS, SK
Mon	10 th	JS	Snacks	GCS	Lunch	GCS	Snacks	JS, JB, MK
Tue	11 th	JS		GCS		GCS		GCS, JB, MK
Wed	12 th	JS		GCS		GCS		GCS, JB, MK
Thu	13 th	JS		SM		SM		JS, JB, MK
Fri	14 th	JS		SM		SM		SM, JB, MK
Sat	15 th	JS		SM		SM		JS, JB, MK

*Holiday on Sunday (June 09, 2024)

SKT-Prof. S. K. Tomar

PC-Prof. Peeyush Chandra

GCS-Prof. Gopal Chandra Shit

SCM-Dr S. C. Martha

JS-Dr Jitender Singh

SM-Dr Santanu Manna

DS- Dr Dilbag Singh

SK- Dr Suraj Kumar

JB- Dr Jai Bhagwan

MK- Dr Manjeet Kumar