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Abstract: We describe recent developments in the study of unimodular rows over

a commutative ring by studying the associated group SUmr(R), generated by Suslin

matrices associated to a pair of rows v, w with 〈v, w〉 = 1.

We also sketch some futuristic developments which we expect on how this
association will help to solve a long standing conjecture of Bass–Suslin (initially
in the metastable range, and later the entire expectation) regarding the com-
pletion of unimodular polynomial rows over a local ring, as well as how this
study will lead to understanding the geometry and physics of the orbit space of
unimodular rows under the action of the elementary subgroup.

1 Introduction

We begin by recapitulating the birth and early use of the Suslin matrices. The
genesis is in the beautiful §5 of Suslin’s paper [58]. He has said so much, with
such fluency and consummate ease; it begets an area of mathematics rich in
its connections with the rest of mathematics. The title of §5 ‘A procedure
for constructing invertible matrices’ is most intriguing. This section is also
astounding in another sense; it is the first instance we know where Suslin has
penned a flow of thoughts without much elaboration; as was his normal style.
Naturally, it behoves his admirers to unearth the encrypted wisdom stored in
it.

We intersperse this history with our own rambling thoughts of some of our
immediate expectations. (A computer-algebra aided study, (especially wise with
(perhaps) use of sparse matrices), will be helpful to ease some of our mendi-
cations.) We are prejudiced in choosing outlets which we feel will lead to a
solution of two of the central problems in classical algebraic K-theory; both
are questions regarding finding a procedure to complete a unimodular row to
an invertible matrix, one of length d over a d dimensional affine algebra over
an algebraically closed field (posed by Suslin), and the other of a unimodular
polynomial row of any length over a local ring (posed by Bass–Suslin). We have
made some progress in these directions, using the truncated Suslin matrices,
and we refer the reader to [15] for the first problem, and [48], [49] for the second
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one. But the reader will feel the stirrings that the subject of the study of uni-
modular rows will soon evolve far beyond the range of these important classical
problems.

We proceed to detail the association of a composition of two reflections
τ(v,w) ◦ τ(e1,e1) with a pair of rows v, w with 〈v, w〉 = 1. This association en-
ables one to study the orbit space of unimodular rows under elementary action.
Moreover since τ(v,w) ◦ τ(e1,e1) is an orthogonal transformation, one gets a ho-
momorphism from SUmr(R), the subgroup of the linear group generated by the
Suslin matrices, to the special orthogonal group SO2(r+1)(R); which is a well
studied object. This allows us to pull back useful information in the study of
unimodular rows.

The group SUmr(R) has properties resembling those of classical spinor groups;
and we feel that the further study of this group will lead to a better understand-
ing of the geometry and physics of the orbit space of unimodular rows under
the action of the elementary subgroup.

2 The Suslin Matrices

Given two rows v, w ∈ M1,r+1(R), r ≥ 1, in ([58], §5) Suslin associates with

them a matrix Sr(v, w) ∈M2r (R) of determinant 〈v, w〉2r−1

= (v ·wt),2r−1

whose
entries are from the coordinates of v, w upto a sign. We call these the Suslin
matrix w.r.t. v, w. They are particularly interesting to us when they are in
SL2r (R), i.e. when 〈v, w〉 = v ·wT t is 1. The explicit construction of the Suslin
matrix is defered for the moment.

Trimurthi of Suslin Matrices

So far the Suslin matrix has manifested in at least three different contexts:
• Establishing that the unimodular row (a0, a1, a

2
2, . . . , a

r
r) can be completed

to an invertible matrix. See the seminal paper of Suslin [58]; especially Theorem
2, Proposition 1.6 and the beautiful §5.
• From studying the Koszul complex associated to a unimodular row. See

[65], Section 2, especially Proposition 2.2, Corollary 2.5.
• As orthogonal transformations on a certain space. See ([25], Corollary

4.2).

More recent developments

Two recent developments are briefly mentioned here. The reader should refer
to the cited texts for notations which have not been explained here.

The Fundamental property of Suslin matrices in [24] led the referee to suspect
a link between Suslin matrices and Spin groups. This connection was established
in the thesis of Vineeth Chintala and appears in [12]. We sketch some of his
ideas next.
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For a commutative ring R, the hyperbolic space H(Rn) is the module Rn ×
Rn endowed with a quadratic form q such that q(v, w) == 〈v, w〉 = v · wt. To
this structure one can associate the Clifford algebra Cln(R) of the quadratic
form, which is isomorphic to the matrix ring M2n(R). Vineeth Chintala proved
in [12] that the map ϕ : H(Rn) 7→M2n(R) given by

ϕ(v, w) =

(
0 Sn−1(v, w)

Sn−1(w, v)t 0

)
induces a R-algebra isomorphism. One can then derive the Jose–Rao funda-
mental property of Suslin matrices from this.

The map Sn−1(v, w) 7→ Sn−1(w, v)t can be used to construct an involution
x 7→ x∗ on Cln(R) = Cl0(R)⊕ Cl2(R). One defines the Spin groups

Spin2n(R) = {x ∈ Cl0(R) | xx∗ = 1 and xH(Rn)x−1 = H(Rn)}.

This involution on Cln(R) corresponds to the standard involution onM2n(R).
One can define the groups

Gn−1(R) = {g ∈ GL2n−1 | gSg∗is a Suslin matrix, for all Suslin matrices S}.

The subgroup of Gn−1(R) consisting of those which preserve the quadratic
form on H(Rn) is denoted by SGn−1(R). Vineeth Chintala proves that there
is an isomorphism Spin2n(R) ' SGn−1(R).

The subgroup generated by the Suslin matrices is thus the rational points
of a certain Spinor group.

The second new approach to Suslin matrices occurs in the work of Aravind
Asok and Jean Fasel in []. Here there is an edge map interpretation for any
regular algebra (with which 2 is invertible) in terms of Suslin matrices. We
shall say a bit more about this later; but refer to [] for more details of this
approach.

Use of Suslin Matrices

The Suslin matrices have proved useful in several contexts. The main application
of Suslin matrices, so far, have been in the following directions:
• A unimodular row of the form (a0, a1, a

2
2, . . . , a

r
r) can be completed to a

matrix βr(v, w), with v = (a0, a1, a2, . . . , ar), and w any row with 〈v, w〉 = 1, of
determinant one. (We may also just write this as βr(v) for brevity.)

Suslin mentions in ([58], §5) that a completion can be got by doing a series
of row and column operations on the matrix Sr(v, w) to reduce it to size (r+1).
However, an explicit process (as suggested by Suslin, based on the sparseness of
the Suslin matrix) is far from clear, even in small sizes. A different reasoning
justifes this in ([65], §2). Undoubtedly, ([58], Proposition 1.6) also gives a neat
way of writing a completion, and also ties up with the Suslin matrix.
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It would be both nice and useful if a good algorithm can be developed to
get a βr(v, w) from a Sr(v, w). We believe that an appropriate βr(v, w) will
replicate the role played by Sr(v, w). The actual use of a “nice” (and explicit)
β2(v, w) can be seen in the works ([44], Lemma 2, Lemma 3), ([57], §5).

Note that it is unclear, and probably unjustified, to expect that any two
βr(v, w) got from a Sr(v, w) are equivalent in Er+1(R). Indeed, there seem to
be completions β of (a2, b, c) which may not arise from a S2(v, w): The first
completion of a unimodular row of the form (a2, b, c) comes from the theory of
cancellation of projective modules in the paper [69] of Swan–Towber where an
explicit completion is stated in ([69], Theorem 2.1). Here are the two comple-
tions: Let aa′ + bb′ + cc′ = 1.

 a2 b c

b+ ac′ −c
′2 + ba′c′ −a′ + b′c′ − c′bb′

c− ab′ a′ + b′c′ + a′cc′ −b
′2 − a′b′c

,
 a2 b c

−b− 2ac′ c
′2 a′ − b′c′

−c+ 2ab′ −a′ − b′c′ b
′2

.
Can the Swan-Towber method of computation be extended to give completions
of the universal factorial row, in view of Suslin’s theorem in [58]. Is there some
interpretation of those completions akin to the theory which Suslin has built.
(Note that both approaches are derived from an explicit computation to show
the transitivity of the group of automorphisms of a projective module P ⊕R on
its unimodular elements.)

Let us commence on a different tack. Bass observed that the projective mod-
ule Pv = ker(R2n v→ R) corresponding to a unimodular row v = (v1, v2, . . . , v2n)
of even length always has a unimodular element, i.e. it splits of a free summand
isomorphic to R: w = (v2,−v1, v4,−v3, . . . ,−v2n, v2n−1) ∈ Pv and is a unimod-
ular row.

Raja Sridharan and Ravi Rao observed that if χ2(v) = (v21 , v2, . . . , v2n−1) ∈
Um2n−1(R) then the projective module Pχ2(v) has a unimodular element. (See
([38], pg. 120, Theorem 5.6) for a more general statement).

S.M. Bhatwadekar commented on seeing this that a unimodular row of the
form (a20, a1, a2, a

2
3, a4, a5) has two independent sections! T.Y. Lam (with inputs

from R.G. Swan) also began the study of Sectionable sequences in ([38], §5,
pg. 116) to make a preliminary study of this phenomenon.

Can one recover Suslin’s theorem on the completion of the ‘universal fac-
torial unimodular row’ by using such an argument? In particular, to begin
with, can one show that a unimodular row of the form (a60, a1, . . . , a2n) has two
independent sections? etc.

• Suslin used it in the computation of K-theory and K-cohomology
of group varieties SLn, GLn, Sp2n, etc. in [66]. We refer the reader to [66]
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where Suslin showed that

SK1

(
ZZ[x1, . . . , xn, y1, . . . , yn]

(
∑n
i=1 xiyi − 1)

)
' ZZ,

with generator [Sn−1((x1, . . . , xn), (y1, . . . , yn))]. Is the group SLn(A)/En(A),
for A = ZZ[x1, . . . , xn, y1, . . . , yn]/(

∑n
i=1 xiyi − 1) generated by [βn−1(v, w)], for

v, w ∈ Umn(A), with 〈v, w〉 = 1? (This may depend on n, but is it true atleast
in the metastable range n ≤ 2d− 3, where d is dimension of A?)

• Patching information in set-theoretic complete intersection prob-
lems.

M. Boratyński showed in [8] that an ideal I in a polynomial ring R over
a field can be generated upto radical by m = µ(I/I2) elements, i.e.

√
I =√

(f1, . . . , fm), for some f1, . . . , fm ∈ R.
This is the first recorded use of the matrices βr(v, w) in the subject of Serre’s

program, followed by the Eisenbud–Evans program, which bridges properties of
projective modules over a ring and the efficient generation of ideals in that ring.
It replaces the homological methods used by Serre, and later by others like
N. Mohan Kumar, M.P. Murthy in this context. The book [22] gives a nice
introduction and survey of major previous literature on this topic.

Let us quickly recall M. Boratyński’s idea: He says that if {x1, . . . , xm} ⊂ I
with {x1, . . . , xm} generating the R/I-module I/I2, and if J is the ideal gener-
ated by (x1, x2, x

2
3, . . . , x

m−1
m ), and I(m−1)!, then

√
J =

√
I, and the projective

R- module got by taking the fibre product

P = Rmt ×βm−1((x1,...,xm)) R
m
1−t

maps onto J , for any t ∈ R with (1 − t)I ⊂ (x1, . . . , xm). (Such a t is readily
found, and the fact that J is locally generated by the obvious m elements on
the open set D(1 − t), and by one element on D(t), is easily verified. This
information is ‘patched’ via βm−1((x1, . . . , xm)).

By the Quillen-Suslin theorem ([40], [60]) P is free, and so J is generated by
m elements.

Thus, M. Boratyński encoded Quillen’s idea of local patching to ideals, and
pushed forward Serre’s program of projective generation of ideals; via a com-
pressed version of a Suslin matrix.

• Defining higher Mennicke symbols on orbits of unimodular rows.

R. Fossum, H. Foxby, B. Iversen defined, for n ≥ 2, a Mennicke n-symbol

Umn(R)
wt→ SK1R using the theory of acyclic based complexes. (We refer the

reader to [17]; a copy of which can be got by making a request.)
Let v = (a1, . . . , an), w = (b1, . . . , bn) ∈ Umn(R), with 〈v, w〉 = v · wt = 1.

The Koszul complex

X(v) = (. . .→ ∧k(Rn)
dv→ ∧k−1(Rn)→ . . .)
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is an acyclic based complex, with each Xk(v) = ∧k(Rn) a free module with
a canonical basis of exterior products ei1 ∧ . . . ∧ eik , ordered lexicographically.
External multiplication by w defines a contraction, say β for X(v).

Since (d + β)2 = 1 + β2, and β is nilpotent, we get an isomorphism, inde-
pendent of choice of the contraction,

X(v)odd = ⊕X2i−1(v) −→ ⊕X2i(v) = X(v)even.

wt(v) = (−1)(
2n−1

n )[d+ β] ∈ SK1(R)

Suslin interprets this map in ([65], §2) and showed that

wt(v) = [Sn−1(v, w)] ∈ SK1(R).

(The reader may consult [46] where details are worked out.)

• Dual is not isomorphic: Let
∑n
i=1 xiyi = 1. Let P be the projective

module corresponding to the unimodular rows (x1, . . . , xn). Then the dual P ∗

of P , i.e. HomR(P,R), is isomorphic to the projective R-module corresponding
to the unimodular row w = (y1, . . . , yn) = w.

It can be seen easily that P and P ∗ are isomorphic when rank P is odd; in
fact, the rows v, w are in the same elementary orbit by a lemma of M. Roitman
in ([56], Lemma 1).

However, if n > 1 is odd then there are several approaches due to M.V. Nori,
R.G. Swan, who have independently shown (using topological arguments) that
P , P ∗ are not isomorphic. For an exposition of this see the homepage of R.G.
Swan at [70], [71].

Together with these approaches, we gave an approach via Suslin matrices
following an argument of Suslin in [65]. We refer the reader to [47] where some
of the approaches are collated. We mention the approach via Suslin matrices
below: Let

R =
ZZ[x1, . . . , x2n−1, y1, . . . , y2n−1](2n−1∑

i=1

xiyi − 1
) .

Suppose that vσ = w, for some σ ∈ GL2n−1(R). Then

wt (w) = wt (vσ) = wt (v) +

2n−1∑
i=0

(−1)i[∧iσ].

Since SK1(R) = ZZ, [σ] = [S2n−2(v, w)]r, for some r. Hence, [∧iσ] =
r[∧iS2n−2(v, w)]. Therefore,

2n−1∑
i=0

(−1)i[∧iσ] = r

2n−1∑
i=0

(−1)i[∧iS2n−2(v, w)]

= r wt(x1, x2, x
−2
3 , . . . , x2n−22n−1)

= r(2n− 2)! wt(v).
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Thus,

wt(w) = [S2n−2(w, v)] = (1 + r(2n− 2)!)wt(v) = (1 + r(2n− 2)!)[S2n−2(v, w)].

But since v is of odd length, [S2n−2(w, v) = [S2n−2(w, v)t] = [S2n−2(w, v)]t, by
the identities of Suslin (detailed a little later), and using the nomality of the ele-
mentary linear subgroup (see ([61], Corollary 1.4)). But S2n−2(v, w)S2n(w, v)t =
I, and so [S2n−2(v, w)] = [S2n−2(w, v)]−1.

Thus, one gets (2 + r(2n − 2)!)wt (v) = 0. A contradiction except when
n = 2, r = −1. 2

• The Suslin matrices can be used to derive properties of the orbit
space of unimodular rows. Consider the following two principles:

? (Generalized Local Global Principle): Let v(X), w(X) ∈ Umr(R[X]),
r ≥ 3. Suppose that v(X)p ∈ w(X)pEr(Rp[X]), for all p ∈Spec(R), and
v(0) = w(0), then is v(X) ∈ w(X)Er(R[X])?

? (Generalized Monic Inversion Principle): Let v(X), w(X) ∈ Umr(R[X]),
r ≥ 3. Let f(X) ∈ R[X] be a monic polynomial. Suppose that v(X)f(X) ∈
w(X)f(X)Er(R[X]f(X)), then is v(X) ∈ w(X)Er(R[X])?

Both the above questions were also raised by T.Y. Lam in ([38], Chapter VIII,
5.6, 5.11). We gave a partial answer in [46] where we showed that χ2([v(X)]) =
χ2([w(X)]), if r is odd, and χ4([v(X)]) = χ4([w(X)]), if r is even. (Here if
v = (v1, . . . , vr) ∈ Umr(R) then χn([v]) denotes the class of the row (vn1 , . . . , vr)
(under elementary column operations). This is shown to be well defined in [76]
by L.N. Vaserstein.)

• The Suslin matrices have thus been found useful for the study of unimod-
ular rows; which are associated to 1-stably free projective modules. Can such a
similar study also be done for any stably free projective module.

It is natural to expect that an analogous Suslin theory will develop for a pair
(p, a) ∈ P ⊕R, (ψ, b) ∈ P ∗ ⊕R, with ψ(p) + ab = 1.

• Suslin studied the transitive action of the orthogonal group on rows
of length one in ([58], Lemma 5.4). The very existence of S3(v, w) implies
that O8(R) acts transitively on the set of rows of length one, i.e. {(v, w), v, w ∈
Um4(R), 〈v, w〉 = 1}. In ([26], Corollary 4.5) we showed that SO2n(R) acts
transitively on pairs having the further property that

[v] =

{
χ2([v′)] if n is odd

χ4([v′]) if n is even

Consequently, in view of Lemma 25 which comes a little later, if R is an affine
algebra of dimension d over a perfect C1 field, or if R = A[X], A a local ring
in which 2 is invertible, in view of ([42], Theorem 1), then SO2(d+1)(R) acts
transitively on rows of length one.
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• Bass–Milnor–Serre began the study of the stabilization for the linear group
GLn(R)/En(R) for n ≥ 3, where R is a commutative ring with identity. In [5],
they showed that K1(R) = GLd+3(R)/Ed+3(R), where d is the dimension of the
maximum spectrum. In [72], L.N. Vaserstein proved their conjectured bound
of (d+ 2) for an associative ring with identity, where d is the stable dimension
of the ring. After that, in [73], he introduced the orthogonal and the unitary
K1-functors, and obtained stabilization theorems for them. He showed that the
natural map {

ϕn,n+1 : S(n,R)
E(n,R) −→

S(n+1,R)
E(n+1,R) in the linear case

ϕn,n+2 : S(n,R)
E(n,R) −→

S(n+2,R)
E(n+2,R) otherwise

(where S(n,R) is the group of automorphisms of the projective, symplectic and
orthogonal modules of rank n with determinant 1, and E(n,R) is the elementary
subgroup in the respective cases) is surjective for n ≥ d + 1 in the linear case,
for n ≥ d in the symplectic case, and for n ≥ 2d + 2 in the orthogonal case,
and is injective for n ≥ 2d+ 4 in the symplectic and the orthogonal cases. Soon
after, in [75], he studied stabilization for groups of automorphisms of modules
over rings and modules with quadratic forms over rings with involution, and
obtained similar stabilization results.

The Suslin matrices have been found useful in the study of injective
stabilization for the K1-functor of the classical groups:

Let A be a non-singular affine algebra of dimension d > 1 over a perfect C1-

field. In [50] it is shown that the natural map SLn(A)
En(A) −→

SLn+1(A)
En+1(A) is injective

for n ≥ d + 1. In [6] it is shown that if (d + 1) !A = A, then the natural

map Spn(A)
En(A) −→

Spn+2(A)

ESpn+2(A) is injective for n ≥ d + 1. Similar results have also

been obtained in the case of the classical modules in [6]. The completion of
the universal factorial row, and H. Lindel–T. Vorst results in [39], [77] on the
Bass–Quillen conjecture, played a crucial role in proving these results.

In the symplectic situation, in [9] these results have been simplified to some
extent using a relative version of Quillen’s Local Global Principle in [1], cou-
pled with the Suslin completions of the factorial row. It is shown in [9] that
vE2n(R, I) = vESp2n(R, I), for any commutative ring R, and ideal I in R, and
for any unimodular row v ∈Umn(R, I), n ≥ 3. Using this one can recapture the
earlier results; and also show that if R be a finitely generated algebra of even
dimension d over K, where K = Z or a finite field or its algebraic closure, and
if σ ∈ Spd(R) with (I2 ⊥ σ) ∈ ESpd+2(R), then σ is (symplectic) homotopic to
the identity. In fact, σ = ρ(1) for some ρ(X) ∈ Spd(R[X])∩ESpd+2(R[X]), with
ρ(0) = Id. Finally, all these results were improved in [20]; and optimal bounds
were obtained there for smooth algebras over an algebraically closed field by
using the the Fasel–Rao–Swan theorem in [15]. Results of such type are also
expected over a perfect field of cohomological dimension ≤ 1; but not over fields
of cohomological dimension two, is demonstrated in [20], in view of N. Mohan
Kumar’s examples in [37] of non-free stably free modules of rank d − 1 over a
field of cohomological dimension 1.
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The relative strengthening of L.N. Vaserstein’s famous lemma (in [67]) that
e1E2n(R) = e1ESp2n(R) done in [9] can also be deduced from it and the Excision
theorem of W. van der Kallen in ([31], Theorem 3.21), via the Key lemma for
Suslin matrices. In fact, one can even get the stronger vE2n(R) = vESpϕ2n

(R),
for any unimodular row v ∈Um2n(R), and any invertible alternating matrix ϕ,
for an appropriate definition of ESpϕ2n(R). It is an instructive exercise for the
reader to figure this out using the material in this text.

The study of injective stabilization is useful to answer a question of Suslin
in [64] regarding whether a stably free projective module of rank (d − 1) over
a (non-singular) affine algebra of dimension d over an algebraically closed field,
with some divisibility conditions, is free. This will be true for even dimensions
if the injective stability estimate for K1Sp falls to d − 1, over odd dimensional
(non-singular) affine algebras of dimension d over a perfect C1-field. This will
be true in any dimension if the injective stability for K1 will fall to d over a d
dimensional (non-singular) affine algebras over a perfect C1-field.

The latter was established in [15]; but as a consequence of establishing
Suslin’s question for non-singular affine algebras over an algebraically closed
field. (The contracted Suslin matrices played a vital role in its proof.)

• The Suslin symbol: In ([58], §5) introduced the groups Gr(A). Gr(A)
is the Witt group of nonsingular quadratic forms if r ≡ 0 mod 4; Gr(A) is the
symplectic K1 functor of the ring A if r ≡ 1 mod 4; Gr(A) is the Witt group of
nonsingular skew-symmetric forms if r ≡ 2 mod 4; Gr(A) is the orthogonal K1

functor of the ring A if r ≡ 3 mod 4.
One has the Suslin maps Sr : Umr+1(A) −→ Gr(A) defined as follows:

Choose a w such that 〈v, w〉 = 1, and set

Sr(v) =

{
[Sr(v, w)] if r = 2k + 1

[Sr(v, w) · Ir] if r = 2k.

For example, if r = 1 then the resulting map S1 is precisely the well-known
Mennicke symbol which had an important role in the solution of the congruence
subgroup problem in [5]; for r = 2 S2 is the Vaserstein symbol introduced in
[67], and which was used to obtain some deep results on orbits of actions of
SL3(A) on Um3(A). Suslin has asked for the meaning and properties of these
maps. Our work in [26] was an initial attempt to understanding these maps
and see if we could get some properties. We mention some progress on these
questions below.

• Hermitian K-theory: One can reinterpret the groups Gr(A) in the con-
text of Hermitian K-theory as developed by M. Karoubi and, more recently,
M. Schlichting. In [2], the authors show that these groups are avatars of higher
Grothendieck-Witt groups. As said above, we have G1(A) = KSp1(A) and
G3(A) = KO1(A). In Schlichting’s notation, one writes KSp1(A) = GW 2

1 (A)
and KO1(A) = GW 0

1 (A), where the letters GW stand for ”Grothendieck-
Witt” groups. These are bigraded abelian groups GW j

i (A) with i ∈ Z and
j ∈ Z/4. Suslin’s symbol Umr+1(A) → Gr(A) reads then as a collection of
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maps Umr+1(A)→ GW r+1
1 (A). In the same paper, A. Asok and J. Fasel show

that Suslin’s computation of the group SK1 of the ring

An =
ZZ[x1, . . . , xn, y1, . . . , yn]

(
∑n
i=1 xiyi − 1)

refines in a computation of Grothendieck-Witt groups of A (with the price to
consider ZZ[1/2]-coefficients). Indeed, one finds

GW r+1
1 (Ar+1) = GW 0

0 (ZZ[1/2])

provided r ≥ 1. There is an analogue of Quillen’s spectral sequence computing
K-theory in terms of codimension of the support in the theory of Grothendieck-
Witt groups (see e.g. [14]). Asok and Fasel show that in the case of the ring
Ar+1, an edge map in the corresponding spectral sequence is indeed an isomor-
phism. This allows to compute this edge map for any regular algebra (with 2
invertible) of dimension ≤ r in terms of Suslin matrices.

• Study of orbit spaces, and classifying spaces: If R = C(X) is the
ring of continuous real valued functions on a topological space X then every
unimodular row v ∈ Umn(C(X)), n ≥ 2, determines a map arg(v) : X −→
IRn−{0} −→ Sn−1. (The first is by evaluation, and the second is the standard
homotopy equivalence.) We thus get an element [arg(v)] of [X,Sn−1]. (As n ≥
2, we may ignore base points.) Clearly, rows in the same elementary orbit define
homotopic maps. Thus, we have a natural map Umn(C(X))/En(C(X)) −→
[X,Sn−1] = πn−1(X).

Note that J.F. Adams has shown that Sn−1 is not a H-space, unless n =
1, 2, 4, or 8. It is classically known that this is equivalent to saying that there is
no suitable way to multiply the two projection maps Sn−1 × Sn−1 in [Sn−1 ×
Sn−1, Sn−1]. However, under suitable restrictions on the ‘dimension’ of X we
may expect to define a product.

Henceforth, let X be a finite CW-complex of dimension d ≥ 2. L.N. Vaser-
stein has shown that the ring C(X) has stable dimension d. Now let n ≥ 3, so
that Sn−1 will be atleast 1-connected. By the Suspension Theorem, the sus-
pension map S : [X;Sn−1] −→ [SX;Sn] is surjective if d ≤ 2(n− 2) + 1, and
bijective if d ≤ 2(n− 2). Moreover, we know that [SX,Sn] is an abelian group.
Hence, the orbit space has a structure of an abelian group. It is shown in ([32],
Theorem 7.7) that above map is a universal weak Mennicke symbol as defined
by W. van der Kallen in [32].

In the context of commutative rings, for n = 3 and d atmost 2, the orbit
space of unimodular rows modulo elementary action was shown to be bijective to
the elementary symplectic Witt group (denoted by WE(R)) by L.N. Vaserstein
in [67] and for d ≤ 2n − 4, to the universal weak Mennicke symbol by W. van
der Kallen in [32].

It would appear too strong to expect the bound to fall; and perhaps it
is, but the article [45] encourages us, as it shows (using Suslin matrices) that
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there is a nice group structure on orbits of squares of unimodular rows when
dim(R) ≤ 2n− 3.

We say that the orbit space Umr(R)/Er(R) has a Mennicke-like (or nice)
structure if

[(a, a2, . . . , ar)] ? [(b, a2, . . . , ar)] = [(ab, a2, . . . , ar)].

In ([18], Theorem 3.9) it is shown that if A is an affine algebra of dimension
d over a perfect field k, of characteristic 6= 2, and with c.d.2(k) ≤ 1, then if
r = d+ 1, the van der Kallen group structure on it defined in [31] is Mennicke-
like.

In [45] the Suslin matrix approach enables one to recapture this theorem
when k is algebraically closed; and also to improve upon it for r = d, when k is
a finite field. In fact, we realized later that the Suslin matrix approach in [45]
would also enable us to recapture ([18], Theorem 3.9). We leave it to the reader
to verify these details.

As pointed out in ([45], due to the strong results of J. Fasel in [16], for a
smooth affine algebra over a field k, of characteristic 6= 2, and with c.d.2(k) ≤ 2,
the group structure on the orbit space Umd+1(A)/Ed+1(A) is nice. Is this the
optimal situation for smooth affine algebras over a field?

The recent progress we have made is to relate these two studies, via the
Suslin symbol. We briefly sketch this next.
• Defining group structures, Witt group structures on orbits of

unimodular rows

One can define a Witt group WEUm(R), and a map from the orbit space
Umn(R)/En(R) −→ WEUm(R) sending [v] to [Sn−1(v, w)], for any w, with
〈v, w〉 = 1. This map is a homomorphism, and is a Steinberg symbol if dim(R) ≤
2n− 3. It is also onto when dim(R) ≤ 2n− 3. One can commence here as the
variant of the Mennicke–Newmann lemma as in ([33], Lemma 3.2) is available.
We expect it to also be injective under these conditions. This is mainly due to
the inherent symmetry of the Suslin matrices.

Note that these would mean that the orbit space would then have a nice
abelian Witt group structure under the condition dim(R) ≤ 2n − 3; which is
an improvement on the condition dim(R) ≤ 2n − 4 in the theorem of van der
Kallen in [32] stated above. More details will appear in [27], when n is even.

• In ([58], §3) Suslin points out that the fact that the universal factorial row
can be completed can be used to find a completion of a linear unimodular row of
length (r+1), provided r! is a unit. In fact he shows that there is a factorial row
in the elementary orbit of any linear unimodular row. At the end of §5 he poses
Problem 4 which reposes a question posed by Bass in [4], with an additional
rider. We now know this as the Bass–Suslin conjecture; and it is one of the
central open questions of classical algebraic K-theory. Let R be a local ring.
Bass asked if Umr(R[X]) = e1SLr(R[X]). Suslin expects this if 1/(r − 1)! ∈ R.
More generally, due to Suslin’s example, one would expect to find a factorial
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row in the elementary orbit of any unimodular row over a polynomial ring over
a local ring.

The results of M. Roitman in [56], and R.A. Rao in [41],[42],[43] bear testi-
mony to this. In [41] [42], [43] unimodular polynomial rows are studied via the
Vaserstein symbol. In [27] a similar study is undertaken via the Suslin symbol.
This study promises to solve this question in the metastable range; however,
one expects that if one couples this with the ideas developing in [55] then one
could get a complete picture, based on the beautiful symmetry of the Suslin
matrices. More precisely, the structure of the Suslin matrix forces a certain
positioning; and the argument in [27] indicates that some positionings (enforced
by the positioning of the coordinates of a Suslin matrix) are suitable to enable
us to lift the yoke of restriction of injective stability estimates of K1 so far.

Historical development often gives a clue to the route one should follow.
The study of completions of unimodular rows over a commutative noetherian

ring R of dimension d gives a hint of things to come. It began with J-P. Serre,
followed by H. Bass, ideas of general position; which were taken further by
Eisenbud–Evans. L.N. Vaserstein started studying group structures on orbits
of unimodular rows using Witt groups. But the paper [67] already contains
enough of non-stable algebraic K-theory arguments on a unimodular row; which
were expanded upon by W. van der Kallen in [31], [32]. Thus, the arguments
of [48] give preliminary historical evidence of getting completion of unimodular
polynomial rows in dimension three by a stable argument. Injective stabilization
plays an important role here; but we suspect that this happens because we have
not done the linearization in a proper way which preserves the anti-symmetry.

It is this combination of ideas that we strongly advocate in the polynomial
case; doing stable linearization, preserving the inherent symmetry of the Suslin
matrices, and taking n-th roots, we believe should give a ‘polynomial time’
feedback completion algorithm at the non-stable level. We hope to be able to
present these ideas in [55].

3 Study of the Suslin matrix

We begin with the study of the alternating matrices; which gives a good role
model to begin the topic.

The alternating matrix V (v, w)

Let v = (a, b, c), w = (a′, b′, c′) with 〈v, w〉 = aa′ + bb′ + cc′ = 1.
We consider the 4× 4 alternating matrix V (v, w) of Pfaffian one:

V (v, w) =


0 a b c
−a 0 c′ −b′
−b −c′ 0 a′

−c b′ −a′ 0


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We wish to analyze the action of ε ∈ E4(R) on V (v, w) by conjugation.

We first recall the Cohn transformations of a row below:

Definition 1 Let v = (a0, a1, . . . , ar), w = (b0, b1, . . . , br) ∈ Rr+1 with 〈v, w〉 =
1. We say that the row

v∗ = vCij(λ) = (a0, . . . , ai + λbj , . . . , aj − λbi, . . . , ar),

for 0 ≤ i 6= j ≤ r, is a Cohn transform of v w.r.t. the row w.

P.M. Cohn in [13] had shown that the matrices I2 + λ

(
a
b

)(
b −a

)
were not

elementary matrices in general.
It was shown in ([24], Lemma 2.1) that the Cohn orbit (got by a finite number

of successive Cohn transforms) is the same as the elementary orbit when r ≥ 2.
Moreover, see ([34] Theorem 3.6), if 〈v, w〉 = 〈v′, w〉 = 1 then v′ can be got from
v by a finite number of Cohn transforms w.r.t. w.

Let us get back to analysing the action of an elementary metrix on an alter-
nating matrix.

One has the following identities:

E12(λ)V (v, w)E12(λ)t = V (vC12(λ), w),

E13(λ)V (v, w)E13(λ)t = V (vC02(−λ), w),

E14(λ)V (v, w)E14(λ)t = V (vC01(λ), w),

E21(λ)V (v, w)E21(λ)t = V (v, wC21(λ)),

E31(λ)V (v, w)E31(λ)t = V (v, wC20(−λ)),

E41(λ)V (v, w)E41(λ)t = V (v, wC10(λ)).

(1)

Equations (1) describes completely the action of E4(R) on an alternating
matrix V (v, w).

We may consider the Vaserstein space V of dimension 6 consisting of all 4×4
alternating matrices over R. The above relations associates a linear transforma-
tion Tσ of V with any σ ∈ SL4(R) by Tσ(V (v, w)) = σV (v, w)σt. The matrix
of this linear transformation w.r.t the usual ordered basis e1, . . . , e6 is not or-
thogonal. However, with respect to the following permutation of the standard
basis e1, . . . , e6 namely e1, e2, e3, e6,−e5, e4 we get

E12(x)→ E62(x)E53(−x) E21(x)→ E26(x)E35(−x)

E13(x)→ E61(−x)E43(x) E31(x)→ E16(x)E34(−x)

E14(x)→ E51(−x)E42(x) E41(x)→ E15(x)E24(x)

The images are all elementary orthogonal matrices. In particular, the matrix
of Tσ will be an orthogonal matrix. One observes also that the map E4(R) is onto
EO4(R). This induces an injection of the quotient groups SL4(R)/E4(R) −→SO4(R)/EO4(R).
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Let us compute Tσ. It is the matrix of ∧2σ. When σ = V (v, w) something

interesting is revealed: the matrix is (I4 −
(
vt

wt

)(
w v

)
)(I4 −

(
et1
et1

)(
e1 e1

)
).

This is recognizable as the product of two reflections τ(v,w) ◦ τ(e1,e1). (See later
for the definition.)

Is there a similar ‘larger sizes’ analogue? The observations above are repli-
cated below with the Suslin matrix substituting for the alternating matrix
V (v, w).
Remark: When we did calculations with 6×6 alternating matrices of Pfaffian one
we found that the corresponding linear transformations were not orthogonal, and
so the theory is dissimilar. It seems worthwhile to investigate what is happening
here.

The Suslin matrix Sr(v, w)

We now describe the Suslin matrices in more detail.

The construction of the Suslin matrix Sr(v, w) is possible once we have two
rows v, w. These matrices will be invertible if their dot product v ·wt = 1. (The
rows are then automatically unimodular rows.) Suslin’s inductive definition:
Let

v = (a0, a1, . . . , ar) = (a0, v1),

with v1 = (a1, . . . , ar),

w = (b0, b1, . . . , br) = (b0, w1),

with w1 = (b1, . . . , br). Set S0(v, w) = a0, and set

Sr(v, w) =

(
a0I2r−1 Sr−1(v1, w1)

−Sr−1(w1, v1)t b0I2r−1

)
.

Suslin noted that Sr(v, w)Sr(w, v)t = (v · wt)I2r = Sr(w, v)tSr(v, w), and

detSr(v, w) = (v · wt),2r−1

for r ≥ 1.
Thus the positions of ai and bi in Sr(v, w) as follows: For 1 ≤ i ≤ r − 1,

1. The positions of a0 in Sr(v, w) is given by (k, k), 1 ≤ k ≤ 2,r−1 and the
positions of b0 in Sr(v, w) is given by (k, k), 2r−1 + 1 ≤ k ≤ 2.r

2. The positions of ar in Sr(v, w) is given by (2k−1, 2r−2k+2), 1 ≤ k ≤ 2,r−1

and the positions of br in Sr(v, w) is given by (2k, 2r−2k+1), 1 ≤ k ≤ 2.r−1

3. The positions of +ai in Sr(v, w) is given by

(22k2r−1−i + j, (2 + (2i−1 − k − 1)22)2r−1−i + j),

where 0 ≤ k ≤ 2i−1 − 1, 1 ≤ j ≤ 2.r−1−i
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4. The positions of −ai in Sr(v, w) is given by

((3 + 22k)2r−1−i + j, (1 + (2i−1 − k − 1)22)2r−1−i + j),

where 0 ≤ k ≤ 2i−1 − 1, 1 ≤ j ≤ 2.r−1−i

5. The positions of +bi in Sr(v, w) is given by

((1 + (2i−1 − k − 1)22)2r−1−i + j, (3 + 22k)2r−1−i + j),

where 0 ≤ k ≤ 2i−1 − 1, 1 ≤ j ≤ 2.r−1−i

6. The positions of −bi in Sr(v, w) is given by

(2 + (2i−1 − k − 1)22)2r−1−i + j, 22k2r−1−i + j),

where 0 ≤ k ≤ 2i−1 − 1, 1 ≤ j ≤ 2.r−1−i

The Suslin forms Jr

To understand the nature of the shape of the Suslin matrices we recall Suslin’s
sequence of forms Jr ∈ M2r (R) given by the recurrence formulae:

Jr =


1 for r = 0

Jr−1 ⊥ −Jr−1, for r even ,

Jr−1>− Jr−1, for r odd.

(The English translation wrongly says Jr = Jr−1 ⊥ Jr−1 when r is even.)

(Here α ⊥ β =

(
α 0
0 β

)
, while α>β =

(
0 α
β 0

)
.)

How did Suslin think of these forms? What will the form be if the ‘Suslin
matrix’ is constructed by a slightly different basis; say by the usual lexicographic
ordering of the basis to describe the map ⊕iodd∧iRr → ⊕ieven∧iRr in the earlier
construction. We give a possible approach: Observe that Jr =

∏r+1
i=1 Sr(ei, ei).

The reader can verify this by an easy induction on r. (Or can refer to [46] where
it is proved.)

It is easy to see that det Jr = 1, for all r, and that J tr = J−1r = (−1)
r(r+1)

2 Jr.
Moreover, Jr is antisymmetric if r = 4k + 1 and r = 4k + 2, whereas Jr is
symmetric for r = 4k and r = 4k + 3.

We know from Suslin that he was unaware of M. Krusemeyer’s explanations
in [35] [36] for the Swan-Towber completion of (a2, b, c). The explanations of
M. Krusemeyer seem to be adequate only in the case of alternating forms. (Are
we wrong in saying this?)

Suslin recognized the need to analyse the shapes of the Suslin matrices
Sr(v, w). He realized that the shapes satisfied similar properties according to
the length (r + 1) of the row.
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In ([58], Lemma 5.3), it is noted that the following formulae are valid:

for r=4k : (Sr(v, w)Jr)
t = Sr(v, w)Jr;

for r=4k + 1 : Sr(v, w)JrSr(v, w)t = (v · wt)Jr;
for r=4k + 2 : (Sr(v, w)Jr)

t = −Sr(v, w)Jr;

for r=4k + 3 : Sr(v, w)JrSr(v, w)t = (v · wt)Jr.

We call these the Suslin identities. These identities are the core of the
underlying four physical configuration spaces in which unimodular rows live.

These identities may be easily verified by induction on r. Alternatively, one
can also observe it after noting that for r ≥ 1, and 2 ≤ i ≤ r+ 1, Sr(ei, ei)

−1 =
Sr(ei, ei)

t = −Sr(ei, ei), Sr(ei, ei)2 = −I2r , and detSr(ei, ei) = 1, and the
following lemma:

Lemma 2 Let v = (a0, a1, . . . , ar), w = (b0, b1, . . . , br) ∈ M1r+1(R), r ≥ 1.
Then for 2 ≤ i ≤ r + 1,

Sr(ei, ei)Sr(v, w)Sr(ei, ei)
−1 = Sr(v

′, w′),

where
v′ = (b0,−a1, . . . ,−ai−2, bi−1,−ai, . . . ,−ar), and
w′ = (a0,−b1, . . . ,−bi−2, ai−1,−bi, . . . ,−br).

Thus, one has

JrSr(v, w)J−1r =

{
Sr(v, w)t if r even
Sr(w, v) if r odd.

The Suslin identities show that unimodular rows of length r + 1 will have
properties depending on [r] modulo 4. We have already seen an instance of a
property which depends on the parity of r when discussing the isomorphism of
a projective module corresponding to a row and its dual projective module. Is
there such an example of a property for unimodular rows which depends on the
[r] modulo 4?

When searching for an algorithm to create a βr(v, w) from Sr(v, w) one
should also keep the following question in mind. One knows that there is a
βr(v, w) ∈ Sr(v, w)E2r (R). When r is odd, is there a βr(v, w) ∈ Sr(v, w)GE2r (R),
where GE = ESp when r = 4k + 1, and GE = EO when r = 4k + 3? (The
“right” ESp, EO is part of the query.)

The Fundamental property and the Key Lemma

We give a simple proof of the Fundamental property of Suslin matrices, which
first appeared in [24].

Lemma 3 Let R be a ring with 1. Let S be a subset of R satisfying

1. a ∈ S implies −a ∈ S.
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2. a, b ∈ S implies a+ b ∈ S.

3. a ∈ S implies a2 ∈ S.

Then a, b ∈ S implies ab+ ba ∈ S, 2abc ∈ S.

Proof: ab+ ba = {(a+ b)2 − a2} − b2 ∈ S. Hence,

{a(ab+ ba) + (ab+ ba)a} − (a2b+ ba2) = 2aba ∈ S.

We now state and prove the important Fundamental property satisfied by
the Suslin matrices.

Corollary 4 (Fundamental property) Let Sr(s, t), Sr(v, w) be Suslin matrices.
Then

Sr(s, t)Sr(v, w)Sr(s, t) = Sr(v
′, w′)

Sr(t, s)Sr(w, v)Sr(t, s) = Sr(w
′, v′),

for some v′, w′ ∈ M1,r+1(R), which depend linearly on v, w and quadratically

on s, t. Consequently, v′ · w′t = (s · tt)2(v · wt).

Proof: Take R =M2r (R), and let S be the subset of all Suslin matrices above.
Take a = Sr(s, t), b = Sr(v, w). Then 2aba ∈ S. A generic argument will enable
us to assume that 2 is a non-zero-divisor, and allow us to conclude that aba ∈ S.

The last two assertions will need the more specific argument given in ([26],
Lemma 2.5).

Remark 5 L. Avramov had independently observed a similar argument to prove
the Fundamental property of Suslin matrices.

The Key Lemma

Recall that we were led to the above Fundamental property in ([24], Corollary
3.3) by the Key Lemma via the methods of commutative algebra. We next recall
the Key Lemma which is actually equivalent to the Fundamental Property. (We
refer the reader to the thesis of Selby Jose ([23], Chapter 4, Lemma 4.3.16) where
this equivalence has been detailed).

The Cohn transforms were first sighted in the work of L.N. Vaserstein in
[67] when he considered the action of an elementary matrix on a 4×4 invertible
alternating matrix as described earlier. His analysis led us to the key lemma
below:
Notation. For a matrix α ∈ Mk(R), we define αtop as the matrix whose entries
are the same as that of α above the diagonal, and on the diagonal, and is zero
below the diagonal. Similarly, we define α.bot

For simplicity we may write αt for α,top αb for α,bot and αT for α transpose.
Moreover, we use αtb for αtop or α.bot

17



Lemma 6 (Key Lemma)
Let v, w ∈ M1,r+1(R). Then, for r ≥ 2, 2 ≤ i ≤ r + 1, λ ∈ R,

Sr(vEi1(−λ), wE1i(λ)) = Sr(e1, e1E1i(λ))topSr(v, w)Sr(e1, e1E1i(λ)),bot

Sr(vE1i(λ), wEi1(−λ)) = Sr(e1E1i(λ), e1)botSr(v, w)Sr(e1E1i(λ), e1),top

Sr(vC0i−1(−λ), w) = Sr(e1E1i(λ), e1)topSr(v, w)Sr(e1E1i(λ), e1),bot

Sr(v, wC0i−1(−λ)) = Sr(e1, e1E1i(λ))botSr(v, w)Sr(e1, e1E1i(λ)).top

In view of its own importance we wish to record the useful observation which
led us to the proof of the Key Lemma given in ([24], Lemma 3.1):

Lemma 7 Let v, w, s, t ∈ Rr+1 and let v = (a0, a1, . . . , ar), w = (b0, b1, . . . , br).
Then

Sr(v, w) + Sr(w, v)t = {a0 + b0}I2r .
Sr(s, t)Sr(w, v)t + Sr(v, w)Sr(t, s)

t = {〈s, w〉+ 〈v, t〉}I2r .
Sr(w, v)tSr(s, t) + Sr(t, s)

tSr(v, w) = {〈s, w〉+ 〈v, t〉}I2r .

Proof: This is the usual bilinear consequence of the quadratic relation

Sr(v + s, w + t)Sr(w + t, v + s)t = 〈v + s, w + t〉I2r
= {〈v, w〉+ 〈v, t〉+ 〈s, w〉+ 〈s, t〉}I2r.

The relations above reminds one of the relations in a Clifford algebra.

Commutator Calculus

Finally, we record a few interesting relations we got in ([24], Lemma 3.6) by
use of the Key Lemma: This is the Yoga of commutators in the elementary
unimodular vector group. As is known, a proper handle of this, can lead one
to understand the quotient group of the Suslin unimodular vector group by its
elementary unimodular vector group, better. In fact, it is eventually shown that
this is a solvable group, using the methods of A. Bak in [3]. (See below for the
definitions, and indications of a proof.)

Lemma 8 Let 2 ≤ i 6= j ≤ r + 1, and let λ = −2xy. If

α = [Sr(e1E1i(x), e1), Sr(e1E1j(y), e1)],

α∗ = [Sr(e1E1j(−y), e1), Sr(e1E1i(−x), e1)]

then α∗ = α−1, and Sr(vCi−1j−1(λ), w) = αSr(v, w)α−1;

β = [Sr(e1, e1E1i(x)), Sr(e1, e1E1j(y))],

β∗ = [Sr(e1E1j(−y), e1), Sr(e1, e1E1i(−x))],

then β∗ = β−1, and Sr(v, wCi−1j−1(λ)) = βSr(v, w)β−1;

γ = [Sr(e1E1j(x), e1), Sr(e1, e1E1i(y))],

γ∗ = [Sr(e1, e1E1i(−y)), Sr(e1E1j(−x), e1)],

then γ∗ = γ−1, and Sr(vEij(λ), wEji(−λ)) = γSr(v, w)γ.−1
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The Suslin Vector space

It is easy to see that the set

S = {Sr(v, w)|v, w ∈M1r+1(R)}

is a free R-module or rank 2(r + 1). For a basis one can take se0, . . ., ser+1,
se∗0, . . ., se∗r+1, where sei = Sr(ei, 0), se∗i = Sr(0, ei), for 0 ≤ i ≤ r. We shall
call this the Suslin space.

The Suslin Matrix Groups

Definition: The Special Unimodular Vector group SUmr(R) is the subgroup of
SL2r (R) generated by the Suslin matrices Sr(v, w) w.r.t. the pair (v, w), with
v ∈ Umr+1(R), for some w with 〈v, w〉 = v · wt = 1.

Remark 9 One can analogous to the linear case, define the Elementary Uni-
modular vector subgroup EUmr(R) of SUmr(R) generated by the Suslin matri-
ces Sr(v, w), with v = e1ε, for some ε ∈ Er+1(R), and with v · wt = 1.

Proposition 10 (Center of SUmr(R)) ([26], Corollary 3.5)
Let R be a commutative ring. The center Z(SUmr(R)) of the Special Unimod-
ular vector group SUmr(R) consists of scalar matrices uI2r . Moreover,

Z(SUmr(R)) =

{
{uI2r : u ∈ R, u2 = 1}, if r odd

{uI2r : u ∈ R, u4 = 1}, if r even.

Hence Z(SUmr(R)) ⊆ EUmr(R).

Commutator Calculus (contd.)

There is yet another set of generators for EUmr(R), viz. Sr(e1E1i(x), e1),
Sr(e1, e1E1i(y)), and Sr(ei, eiEi1(a)), Sr(eiEi1(b), ei), for 2 ≤ i ≤ r+1, x, y, a, b ∈
R. This was shown in [24], via the Key Lemma 6 and Lemma 13.

We record the commutator formulae in EUmr(R)tb next: We use the conve-
nient notation that for r ≥ 1, 1 ≤ i ≤ r + 1, λ ∈ R,

E(e1)(λ) = I2r = E(e∗1)(λ)

E(ei)(λ) = Sr(e1E1i(λ), e1); i > 1

E(e∗i )(λ) = Sr(e1, e1E1i(λ)); i > 1

(If we wish to stress the size we will write Er(ei)(λ), Er(e
∗
i )(λ)). 1

1The definition of E(e1)(λ) was erroneously defined as λI2r−1 ⊥ λ−1I2r−1 in [24].
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Proposition 11 For r ≥ 2, λ, µ ∈ R, ci = ei or e∗i , dj = ej or e∗j , we have,
for 2 ≤ i < j ≤ r + 1,

[Er(ci)(λ)t, Er(dj)(µ)b]

= [Er−1(ci−1)(λ)t, Er−1(dj−1)(µ)b] ⊥ [Er−1(ci−1)(λ)t, Er−1(dj−1)(µ)b]

= α ⊥ · · · ⊥ α︸ ︷︷ ︸
2i−2 times

,

where

α =

{
{Er−i+1(dj−i+1)(λµ)top ⊥ Er−i+1(dj−i+1)(−λµ)bot} if ci = ei,
{Er−i+1(dj−i+1)(λµ)bot ⊥ Er−i+1(dj−i+1)(−λµ)top} if ci = e∗i .

We next calculate the triple commutators:

Lemma 12 For r ≥ 2, 2 ≤ i 6= j ≤ r + 1, λ, µ, ν ∈ R,

(i)
[
[E(ei)(λ)top, E(ej)(µ)bot], E(e∗i )(ν)tb

]
= E(ej)(λµν),tb

(ii)
[
[E(e∗i )(λ)top, E(ej)(µ)bot], E(ei)(ν)tb

]
= E(ej)(λµν),tb

(iii)
[
[E(ei)(λ)top, E(e∗j )(µ)bot], E(e∗i )(ν)tb

]
= E(e∗j )(λµν),tb

(iv)
[
[E(e∗i )(λ)top, E(e∗j )(µ)bot], E(ei)(ν)tb

]
= E(e∗j )(λµν).tb

The Key Lemma makes us consider the subgroup EUmr(R)tb of E2r (R)
generated by elements of the type Sr(e1E1i(x), e1)tb, Sr(e1, e1E1i(x))tb. In view
of the Key Lemma it is clear that EUmr(R) ⊂ EUmr(R)tb.

Via the triple commutator laws, one gets the following relations, which prove
the fact that EUmr(R) = EUmr(R)tb.

Lemma 13 ([26], Lemma 4.9)
For r ≥ 2, 2 ≤ i 6= j ≤ r + 1, and λ ∈ R.

Sr(e1E1i(λ), e1)top = Sr(e1E1j(λ), e1)Sr(e1 − λej + ei, e1)Sr(e1E1i(−1), e1)

Sr((1− λ)e1 + λej + ei, e1 + ej)Sr(e1 − ei, e1 − ej)
Sr((1 + λ)e1 − λej , e1 + ej)Sr(e1, e1E1j(−1)),

Sr(e1E1i(λ), e1)bot = Sr(e1, e1E1j(−1))Sr((1 + λ)e1 − λej , e1 + ej)

Sr(e1 − ei, e1 − ej)Sr((1− λ)e1 + λej + ei, e1 + ej)

Sr(e1E1i(−1), e1)Sr(e1 − λej + ei, e1)Sr(e1E1j(λ), e1)

Sr(e1, e1E1i(λ))top = Sr(e1E1j(−1), e1)Sr(e1 + ej , (1 + λ)e1 − λej)
Sr(e1 − ej , e1 − ei)Sr(e1 + ej , (1− λ)e1 + λej + ei)

Sr(e1, e1E1i(−1))Sr(e1, e1 − λej + ei)Sr(e1, e1E1j(λ)),

Sr(e1, e1E1i(λ))bot = Sr(e1, e1E1j(λ))Sr(e1, e1 − λej + ei)Sr(e1, e1E1i(−1))

Sr(e1 + ej , (1− λ)e1 + λej + ei)Sr(e1 − ej , e1 − ei)
Sr(e1 + ej , (1 + λ)e1 − λej)Sr(e1E1j(−1), e1)

(Note that the alternate relations are got by reversing the order).

20



The first step in computing the center Z(SUmr(R)) is to show that it consists
of scalars. We give a different proof than in [24] of the fact that Z(SUmr(R))
consists of scalar matrices. We use the fact here that EUmr(R)tb = EUmr(R),
for r > 1.

Lemma 14 Let A ∈ M2s(M2t(R)), t ≥ 1, s + t = r be a diagonal block
matrix, where the alternating diagonal blocks are the same. If A commutes with
Er(es+1)(1)top and Er(e

∗
s+1)(1),top then A ∈ M2s+1(M2t−1(R)) is a diagonal

block matrix whose alternating diagonal block entries are same.

Proof: Let

(
a11 a12
a21 a22

)
,

(
a33 a34
a43 a44

)
∈ M2t−1(M2(R)) be the two, perhaps dif-

ferent, diagonal blocks of A. Compare the (1, 2s)-th, (1, 2s−1)-th, and (2, 2s−1)-
th block entries of AEr(es+1)(1)top and Er(es+1)(1)topA we get a21 = 0, a34 = 0,
and a11 = a33 respectively. Compare the (1, 2s)-th, (2, 2s)-th, and (2, 2s− 1)-th
block entries of AEr(e

∗
s+1)(1)top and Er(e

∗
s+1)(1)topA we get a12 = 0, a22 = a44,

and a43 = 0 respectively. Hence A ∈ M2s+1(M2t−1(R)) and is a diagonal matrix
with alternating entries equal.

Lemma 15 Let A ∈ M2r (R) be a diagonal matrix with equal alternating diag-
onal entries. If A commutes with Er(er+1)(1),top then A is a scalar matrix.

Proof: Let a11 and a22 be the two different diagonal entries of the matrix A.
Compare the (1, 2r)-th entry of AEr(er+1)(1)top and Er(er+1)(1)topA, we get
a11 = a22. Hence A is a scalar matrix.

Proposition 16 (Center of SUmr(R))
Let A ∈ M2r (R). If A commutes with every element of SUmr(R), then A is a
scalar matrix.

Proof: Since SUm2(R) = Sl2(R), the result is clear for r = 1. So let r ≥ 2. Let
us write A = (aij)1≤i,j≤4 in block form. By comparing entries we observe that

(1) Er(e
∗
2)(1)topA = AEr(e

∗
2)(1)top implies a12 = a32 = a41 = a42 = a43 = 0,

a22 = a44,

(2) Er(e2)(1)topA = AEr(e2)(1)top implies a21 = a31 = a34 = 0, a11 = a33,

(3) Er(e
∗
2)(1)botA = AEr(e

∗
2)(1)bot implies a13 = a14 = a23 = 0, and

(4) Er(e2)(1)botA = AEr(e2)(1)bot implies a24 = 0.

Hence A ∈ M22(M2r−2(R)) is a diagonal block matrix with alternating diagonal
blocks same. Apply Lemma 14 r − 2 times and conclude that A is a diagonal
matrix with alternating entries same. Now apply Lemma 15 to get the desired
result.

Corollary 17 An element in M2r (R) which commutes with E(c)(1),top for
c = ei or e∗i , 3 ≤ i ≤ r + 1, and E(d)(1),tb d = e2 or e∗2, is a scalar matrix.

Proof: Obvious from the proof of Proposition 16.
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An involution on SUmr(R), r even

The case when r is even; where the involution can be defined.

Let α =
∏n
i=1Si be a product of Suslin matries Si = Sr(vi, wi), and let α∗

denote
∏1
i=n Si. If r is even, then α 7→ α∗ is a well defined anti-involution of

SUmr(R): By Suslin’s identities,

Sr(v, w) = JrSr(v, w)tJ−1r .

Hence, α∗ = Jrα
tJ−1r , and we are done. From this, it follows that Z(SUm)r(R) =

{uI2r |u2 = 1}, when r is even.

We now discuss the case when r is odd; where we showed that there is an
ambiguity to define the involution.

In ([26], Corollary 3.2) we show that if I2r = Sr(v1, w1) . . . Sr(vk, wk), for
some 〈vi, wi〉 = 1, for 1 ≤ i ≤ k, then Sr(vk, wk) . . . Sr(v1, w1) = uI2r , for some
unit u with u2 = 1.

Moreover, in ([26], §5) we show that given a unit u with u2 = 1, we can find
Sr(vi, wi), with 〈vi, wi〉 = 1, 1 ≤ i ≤ k, for some k, such that

I2r = Sr(v1, w1) . . . Sr(vk, wk)

uI2r = Sr(vk, wk) . . . Sr(v1, w1).

Thus, α∗ is defined upto a unit factor when r is odd. This fact is useful to
compute Z(SUm)r(R) when r is odd.

Suslin matrices, Orthogonal transformations

The Fundamental property of Suslin matrices enables one to define an action of
the group SUmr(R) on the Suslin space. One associates a linear transformation
Tg of the Suslin space with a Suslin matrix g, via

Tg(x, y) = (x′, y′),

where gSr(x, y)g∗ = Sr(x
′, y′). Moreover, if g is a product of Suslin matrices

Sr(vi, wi), with vi · wti = 1, for all i, then Tg ∈ O2(r+1)(R), i.e.

〈Tg(v, w), Tg(s, t)〉 = 〈(v, w), (s, t)〉 = v · wt + s · tt.

Translating the Fundamental identities

Theorem 18 ([26], Corollary 4.2) The above action induces a canonical homo-
morphism ϕ : SUmr(R)→ SO2(r+1)(R), with

ϕ(Sr(v, w)) = TSr(v,w) = τ(v,w) ◦ τ(e1e1),
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where τ(v,w) is the standard reflection with respect to the vector (v, w) ∈ R2(r+1)

given by the formula

τ(v,w)(s, t) = 〈v, w〉(s, t)− (〈v, t〉+ 〈s, w〉)(v, w).

The matrix of the linear transformation was also calculated in ([23], Chapter
5, Lemma 5.2.1).

Lemma 19 Let R be a commutative ring with identity. Let v, w ∈ Umr+1(R),
then the matrix of the linear transformation TSr(v,w) with respect to the (ordered)
basis {Sr(e1, 0), Sr(e2, 0), . . . , Sr(er+1, 0), Sr(0, e1), Sr(0, e2), . . . , Sr(0, er+1)} is(

I− (v, w)t(w, v)
) (

I− (e1, e1)t(e1, e1)
)
.

In particular, for v = e1ε, w = e1ε
t−1 for some ε ∈ SLr+1(R), the matrix of

TSr(v,w) is the commutator
[
εt ⊥ ε−1, (I− (e1, e1)t(e1, e1))

]
.

Elementary orthogonal matrices and reflections

Let π denote the permutation (1 r + 1) . . . (r 2r) corresponding to the form
Ir>Ir. The elementary orthogonal matrices over R is defined as

oeij(z) = I2r + zeij − zeπ(j)π(i), if i 6= π(j) and i < j,

where 1 ≤ i 6= j ≤ 2r, and z ∈ R.
The elementary orthogonal group EO2r(R) is a subgroup of SO2r(R)

generated by the matrices oeij(z), where 1 ≤ i 6= π(i) 6= j ≤ 2r, and z ∈ R.
We showed in [24] that every elementary orthogonal transformation can

be written as a product of reflections. In fact, the standard generators of
EUmr(R)tb map onto the standard generators of EO2(r+1)(R), when r is even.
Now apply:

Proposition 20 Let λ ∈ R. For r ≥ 2, 2 ≤ i 6= j ≤ r + 1, and j 6= π(i), one
has, w.r.t. the splitting given in Lemma 13,

oe1i(λ) = τ(e1−ej ,e1) ◦ τ(−(1−λ)e1+ej ,−e1+λej) ◦ τ(e1−ej ,e1−ei)
◦τ(−(1+λ)e1+ej ,−e1−λej+ei) ◦ τ(e1,e1−ei) ◦ τ(−e1,−e1+λej+ei)
◦τ(e1,e1−λej) ◦ τ(e1,e1) = TSr(e1,e1E1i(−λ)),top

oei1(λ) = τ(e1,e1−ej) ◦ τ(−e1−λej ,−(1+λ)e1+ej) ◦ τ(e1−ei,e1−ej)
◦τ(−e1+λej+ei,(λ−1)e1+ej) ◦ τ(e1−ei,e1) ◦ τ(−e1−λej+ei,−e1)
◦τ(e1+λej ,e1) ◦ τ(e1,e1) = TSr(e1E1i(λ),e1),bot

oeπ(1)i(λ) = τ(e1,e1−λej) ◦ τ(−e1,−e1+λej+ei) ◦ τ(e1,e1−ei)
◦τ(−(1+λ)e1+ej ,−e1−λej+ei) ◦ τ(e1−ej ,e1−ei)
◦τ((λ−1)e1+ej ,−e1+λej) ◦ τ(e1−ej ,e1) ◦ τ(e1,e1) = TSr(e1,e1E1i(−λ)),bot

oeiπ(1)(λ) = τ(e1+λej ,e1) ◦ τ(−e1−λej+ei,−e1) ◦ τ(e1−ei,e1)
◦τ(−e1+λej+ei,(λ−1)e1+ej) ◦ τ(e1−ei,e1−ej) ◦ τ(−e1−λej ,−(1+λ)e1+ej)
◦τ(e1,e1−ej) ◦ τ(e1,e1) = TSr(e1E1i(λ),e1).top

23



We refer the reader to the Appendix where we show how the mathematical
software MuPAD helps in the computation of composition of reflections.

Kernel of ϕ : SUmr(R) −→SO2(r+1)(R)

We compute the kernel of the map ϕ, and show that it consists of scalars uI2r ,
with u2 = 1. This follows from:

Lemma 21 Let R be a commutative ring in which 2 is invertible. Let α ∈
SUmr(R). Suppose that αSr(v, w)α∗ = Sr(v, w), for all Sr(v, w) ∈ EUmr(R).
Then α∗ centralizes EUmr(R). Consequently, α is a scalar uI2r , for some unit
u ∈ R, and α ∈ Z(SUmr(R)).

Note that in the above statement we have replaced SUmr(R) by EUmr(R) in
([26], Lemma 4.7). This is possible due to the Corollary 17.

The above lemma is really the key to verifying formulas relating to the action
of an element of SUmr(R) on a Suslin matrix Sr(v, w).

Computational techniques in SUmr(R)

We illustrate different computational techniques which help to prove the rela-
tions in the group EUmr(R), etc. Each method has its own merit. Here we
collate five such methods.

(1) Direct Computational Method: In this method we directly evaluate
both sides of the relation using the properties of Suslin matrices as in
Lemma 6, and show that they are equal.

(2) Circle Type Method: In this method we arrange the matrix block
entries in a particular way. The arrangement helps us to do the matrix
multiplication easily; as well as gives an inductive framework. We now
define this particular type of arrangement in the following definition.

Definition 22 Let R be a commutative ring with 1. For α, β ∈ M2(Mn(R)),

r ≥ 1, say α =

(
α11 α12

α21 α22

)
, β =

(
β11 β12
β21 β22

)
, where each αij , βij ∈

Mn(R), 1 ≤ i, j ≤ 2. We denote by α � β (read as ‘α circles β’) the
matrix 

α11 0 0 α12

0 β11 β12 0
0 β21 β22 0
α21 0 0 α22

 ∈ M4(Mn(R)).

Definition 23 A matrix α ∈ M2r(R) is said to be circled type if there
eixsts β, γ ∈ Mr(R) such that α = β � γ.
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(Suslin Matrices of Circled Type)
Let R be a commutative ring with 1 and let v = (a0, a1, · · · , ar), w =
(b0, b1, · · · , br) ∈ M1r+1(R). The Suslin matrix Sr(v, w) is of circled type
if and only if a1 = 0 = b1.

In this case, one observes that

Sr(v, w) = Sr−1(v1, w1)� Sr−1(v�1 , w
�
1 ),

where v1 = (a0, a2, · · · , ar), w1 = (b0, b2, · · · , br), v�1 = (a0,−b2, a3, · · · , ar),
and w�1 = (b0,−a2, b3, · · · , br).

(3) Action Method: Suppose we expect some relation LHS = RHS. In this
method we first show that the action of LHS on Sr(v, w) and the action of
RHS on Sr(v, w) are same. Using this equality, one can show via Lemma
20 that LHS·RHS−1 ∈ Z(SUmr(R)) and then by some argument (generic
argument), one can show that both LHS and RHS are equal.

(4) Method of Reflection: This is a refinement of the previous method.
Again see the action on Sr(v, w) as above. However, do show the equal-
ity compute via the homomorphism in Theorem 16, ϕ : SUmr(R) →
SO2(r+1)(R) whose image is a composition of two reflections. So instead
of multiplying matrices, one plays with pairs of rows (v, w) of unit length.
Finally to check equality, use the fact that ϕ : EUmr(R) → EO2(r+1)(R)
is surjective and kerϕ ⊂ Z(SUmr(R)).

(5) Orthogonal Matrix Method: In this method, we evaluate the image of
both LHS and RHS under ϕ in the matrix form and do the computation
in EO2(r+1)(R) and show that both the images are the same. Using the
surjectivity of ϕ, one can come back to EUmr(R) and using some argument
as in the previous method one can say that both sides are equal.

Quillen–Suslin theory for EUmr(R[X])

The image of ϕ contains all even products of reflections, and hence, in particular,
all elementary orthogonal matrices.

Thus, all questions concerning the group EUmr(R) can be reduced to the
corresponding questions regarding elementary orthogonal matrices. For ex-
ample, one has a Quillen–Suslin theory for the elementary orthogonal groups
EO2n(R[X]) due to results of Suslin–Kopeiko in [62] - both the Local Global
Principle and the Monic Inversion Principle of Quillen–Suslin hold for the Ele-
mentary Unimodular vector group EUmr(R[X]). From the Local Global Prin-
ciple, or otherwise, one can conclude that EUmr(R[X]) is a normal subgroup of
SUmr(R[X]), for r > 1.
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SUmr(R)/EUmr(R) ↪→ SO2(r+1)(R)/ EO2(r+1)(R)

In this subsection, we recall the main work of Jose–Rao in [25] where they show
how the Fundamental property led to showing that the quotient of the Special
Unimodular vector group by its Elementary unimodular vector group sits inside
the orthogonal quotient; viz. it was shown in ([26], Theorem 4.14) that the
induced map ϕ on the quotients is an injection, whence SUmr(R)/EUmr(R) is
a subgroup of the orthogonal quotient SO2(r+1)(R)/EO2(r+1)(R)

This is clear from Proposition 20 which shows that ϕ maps EUmr(R) →
EO2(r+1)(R) given by ϕ(Sr(v, w)) = TSr(v,w) is surjective. Moreover, one has
the kernel of the map ϕ : SUmr(R)→ SO2(r+1)(R) is contained in Z(SUmr(R)).

R. Hazrat and N. Vavilov, using ideas of A. Bak in [3], have shown in [21]
that the orthogonal quotient group is nilpotent. Hence, the unimodular vector
group quotient SUmr(R)/EUmr(R) is a nilpotent group, for r > 1.

Injective stability for the K1 orthogonal functor

We used results in ([55], §4) in ([54], Corollary 2.7) to show that the injective
stability for the orthogonal K1O functor cannot fall, in general for an affine
algebra. We recapitulate that result here. Thus the Suslin matrices have been
found useful in the context of injective stability bounds of the orthogonal K1O
functors.

Before that we recall yet another lemma from [26].

Lemma 24 Let Sr(v, w), Sr(v
′, w′), r > 1, 〈v, w〉 = 〈v′, w′〉 = 1, be Suslin

matrices. If Sr(v, w) ∈ Sr(v′, w′)EUmr(R), then

(i) if r is even χ2(v)
E∼ χ2(v′),

(ii) if r is odd χ4(v)
E∼ χ4(v′).

Lemma 25 Let A be a an affine algebra of dimension d over a perfect field k,
of characteristic 6= 2, and with c.d.2(k) ≤ 1. Assume that mA = A for some
m > 0. If v ∈ Umd+1(A) then there is a row of the form (vm1 , . . . , vd+1) in the
elementary orbit of v.

Theorem 26 ([54], Theorem 2)
Let A be a an affine algebra of dimension d over an algebraically clsoed field,

or a non-singular one over a perfect C1-field. Assume 2A = A. If the natural
map

ρO :
SO2(d+1)(A)

EO2(d+1)(A)
↔

SO2(d+2)(A)

EO2(d+2)(A)

is an isomorphism, then every unimodular (d+ 1)-row over A can be completed
to an elementary matrix. However, Umd+1(A) = e1Ed+1(A) does not hold in
general.
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Proof: Let d be odd. Let v ∈ Umd+1(A). Choose any w with v · wt = 1.
By Lemma 19 the matrix of the linear transformation TSd(v,w) is a commutator,
hence stably elementary orthogonal. The hypothesis enables us to conclude that
it is elementary orthogonal. By Lemma 24, Sd(v, w) ∈ EUmd(A). Moreover, by
Lemma 24, χ4(v) = 1.

By Lemma 25 as 2A = A, every row v ∈ Umd+1(A) is a χ4(v′), for some
v′ ∈ Umd+1(A). The result follows.

A similar argument can be given when d is even. Using the corresponding
results of [26].

Corollary 27 There exist affine algebras A of dimension d ≥ 2 over a perfect
C1-field k for which the injective stability estimate for K1O(A) is not less than
2(d+ 2).

Theorem 28 Let A be a local ring of dimension d, with 2A = A. If the natu-
ral map SO2(d+1)(A[X])/EO2(d+1)(A[X]) −→ K1O(A) is an isomorphism, then
every unimodular (d + 1)-row over A[X] can be completed to an elementary
matrix.

Corollary 29 There exists an affine algebras A of dimension 3, and a maximal
ideal m of A, for which the injective stability estimate for K1O(Am[X]) is not
8.

Proof: In ([55], §4), it is shown that if A = k[X,Y, Z]/(Z7 − X2 − Y 3),
where k = C or a sufficiently large field, then Um3(A[T, T−1][X], (X)) 6=
e1E3(A[T, T−1][X]). Note that A is regular except at the maximal ideal m =
(X,Y, Z). Hence, by Suslin’s version of the Local Global Principle in [61], and
T. Vorst’s theorem in [77], it follows that there is a maximal ideal M containing
m[T, T−1] such that e1E3(A[T, T−1]M[X]) 6= Um3(A[T, T−1]M[X]). Now apply
Theorem 28.
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Appendix: Reflections via MuPAD
We define the reflection function τ(x,y)(z, w) via MuPAD for r = 4, where

x, y, z, w are vectors of length 5 as follows: In all the commands given below,
we suppress the output by putting colon (:) at the end of each input statement.

To define the function τ(x,y)(z, w), we need to define the vectors x, y, z, w.
The vectors x, y, z, w are defined as:

• x := matrix([[x0,x1,x2,x3,x4]]):

• y := matrix([[y0,y1,y2,y3,y4]]):

• z := matrix([[z0,z1,z2,z3,z4]]):

• w := matrix([[b0,b1,b2,b3,b4]]):

• assume(Type::Real):

• f:=(x,y,z,w) -> linalg::scalarProduct(x,y) * matrix([z,w])

-(linalg::scalarProduct(x,w) + linalg::scalarProduct(y,z)) * matrix([x,y]):

The above statement defines the function

f(x, y, z, w) = 〈x, y〉(z, w)− (〈x,w〉+ 〈y, z〉)(x, y).

Thus f(x, y, z, w) will give the value of τ(x,y)(z, w).
As an illustration, we give the computation we did in the proof of Proposi-

tion 20 for i = 5, j = 3. The computation uses the following vectors:

• v := matrix([[a0,a1,a2,a3,a4]]):

• w := matrix([[b0,b1,b2,b3,b4]]):

• e1 := matrix([[1,0,0,0,0]]):

• ei := matrix([[0,0,0,0,1]]):

• ej := matrix([[0,0,1,0,0]]):

In the following input statements, we use L for λ. We first evaluate τ(e1−ej ,e1)◦
τ(−(1−λ)e1+ej ,−e1+λej) ◦ τ(e1−ej ,e1−ei) ◦ τ(−(1+λ)e1+ej ,−e1−λej+ei) ◦ τ(e1,e1−ei) ◦
τ(−e1,−e1+λej+ei) ◦ τ(e1,e1−λej) ◦ τ(e1,e1) at (v, w).

• AA := simplify(f(e1,e1,v,w))

Output:
v1 = (−b0, a1, a2, a3, a4) and
w1 = (−a0, b1, b2, b3, b4)

• AB := simplify(f(e1,e1-L*ej,AA[1],AA[2]))

Output:

v2 = (a0 + LPa2, a1, a2, a3, a4) and
w2 = (b0 + LPa2, b1, b2 − L2Pa2 − LPa0 − LPb0, b3, b4)

28



• AC := simplify(f(-e1,-e1+L*ej+ei,AB[1],AB[2]))

Output:

v3 = (a4 − b0, a1, a2, a3, a4) and
w3 = (−a0 + a4, b1, b2 − LPa4, b3, a0 − a4 + b0 + b4 + LPa2)

• AD := simplify(f(e1,e1-ei,AC[1],AC[2]))

Output:
v4 = (a0, a1, a2, a3, a4) and
w4 = (b0, b1, b2 − LPa4, b3, b4 + LPa2)

• AE := simplify(f(-(1+L)*e1+ej,-e1-L*ej+ei,AD[1],AD[2]))

Output:

v5 = (a4−b0 + b2−L2Pa2−L2Pa4−L2Pb0 − LPa0 − LPa2 − 2PLPb0 + LPb2,
a1, a0 + a2 − a4 + b0 − b2 + L.a2 + L.a4 + L.b0, a3, a4) and

w5 = (−a0 + a4 + b2 − LPa2 − LPa4 − LPb0, b1,
b2 − L2Pa2 − L2Pa4 − L2Pb0 − LPa0 − LPb0 + LPb2, b3,
a0 − a4 + b0 − b2 + b4 + 2.L.a2 + L.a4 + L.b0)

• AF := simplify(f(e1-ej,e1-ei,AE[1],AE[2]))

Output:

v6 = (a0 − L2Pa2 − L2Pa4 − L2Pb0 − LPa0 + LPa2 + LPa4 + LPb2, a1,
a2 − LPa2 − LPb0, a3, a4) and

w6 = (b0 + LPa2 + LPb0, b1,
b2 − L2Pa2 − L2Pa4 − L2Pb0 − LPa0 − LPb0 + LPb2, b3, b4 − LPb0)

• AG := simplify(f(-(1-L)*e1+ej,-e1+L*ej,AF[1],AF[2]))

Output:

v7 = (−b0 + b2, a1, a0 + a2 + b0 − b2 + L.a4, a3, a4) and
w7 = (−a0 + b2 − L.a4, b1, b2, b3, b4 − L.b0)

• AH := simplify(f(e1-ej,e1,AG[1],AG[2]))

Output:
v8 = (a0 + LPa4, a1, a2, a3, a4) and
w8 = (b0, b1, b2, b3, b4 − LPb0)
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Note that this value is same as oe15(λ)

(
vt

wt

)
, where

oe15(λ) =



1 0 0 0 λ 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 −λ 0 0 0 1


.

Acknowledgements: The second named author would like to thank T.I.F.R.
for its hospitality during which parts of this survey was studied.

References

[1] Apte, Himanee, Chattopadhyay, Pratyusha, Rao, Ravi A.; A local global
theorem for extended ideals. J. Ramanujan Math. Soc. 27 (2012), no. 1,
1–20.

[2] Asok, Aravind, Fasel, Jean; An explicit KO-degree map and applica-
tions, arXiv:1403.4588.

[3] Bak, A.; Nonabelian K-theory: the nilpotent class of K1 and general
stability, K-Theory 4 (1991), no. 4, 363–397.

[4] Bass, H.; Some problems in “classical” algebraic K-theory, Algebraic
K-theory, II: “Classical” algebraic K-theory and connections with arith-
metic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), 3–73.
Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973.

[5] Bass, H., Milnor, J., Serre, J-P.; Solution of the congruence subgroup
problem for SLn (n ≥ 2), Publ. Math. IHES, Vol. 33, (1967), 59–137.

[6] Basu, Rabeya, Rao, Ravi A.; Injective stability for K1 of classical mod-
ules. J. Algebra 323 (2010), no. 4, 867–877.

[7] Basu, Rabeya, Chattopadhyay, Pratyusha, Rao, Ravi A.; Some remarks
on symplectic injective stability. Proc. Amer. Math. Soc. 139 (2011), no.
7, 2317–2325.
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