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Abstract: We describe recent developments in the study of unimodular rows over
a commutative ring by studying the associated group SUm,(R), generated by Suslin
matrices associated to a pair of rows v, w with (v, w) = 1.

We also sketch some futuristic developments which we expect on how this
association will help to solve a long standing conjecture of Bass—Suslin (initially
in the metastable range, and later the entire expectation) regarding the com-
pletion of unimodular polynomial rows over a local ring, as well as how this
study will lead to understanding the geometry and physics of the orbit space of
unimodular rows under the action of the elementary subgroup.

1 Introduction

We begin by recapitulating the birth and early use of the Suslin matrices. The
genesis is in the beautiful §5 of Suslin’s paper [58]. He has said so much, with
such fluency and consummate ease; it begets an area of mathematics rich in
its connections with the rest of mathematics. The title of §5 ‘A procedure
for constructing invertible matrices’ is most intriguing. This section is also
astounding in another sense; it is the first instance we know where Suslin has
penned a flow of thoughts without much elaboration; as was his normal style.
Naturally, it behoves his admirers to unearth the encrypted wisdom stored in
it.

We intersperse this history with our own rambling thoughts of some of our
immediate expectations. (A computer-algebra aided study, (especially wise with
(perhaps) use of sparse matrices), will be helpful to ease some of our mendi-
cations.) We are prejudiced in choosing outlets which we feel will lead to a
solution of two of the central problems in classical algebraic K-theory; both
are questions regarding finding a procedure to complete a unimodular row to
an invertible matrix, one of length d over a d dimensional affine algebra over
an algebraically closed field (posed by Suslin), and the other of a unimodular
polynomial row of any length over a local ring (posed by Bass—Suslin). We have
made some progress in these directions, using the truncated Suslin matrices,
and we refer the reader to [15] for the first problem, and [48], [49] for the second



one. But the reader will feel the stirrings that the subject of the study of uni-
modular rows will soon evolve far beyond the range of these important classical
problems.

We proceed to detail the association of a composition of two reflections
T(v,w) © T(er,e1) With a pair of rows v, w with (v,w) = 1. This association en-
ables one to study the orbit space of unimodular rows under elementary action.
Moreover since 7(, w) © T(e, ;) 18 an orthogonal transformation, one gets a ho-
momorphism from SUm, (R), the subgroup of the linear group generated by the
Suslin matrices, to the special orthogonal group SOg(,41)(R); which is a well
studied object. This allows us to pull back useful information in the study of
unimodular rows.

The group SUm, (R) has properties resembling those of classical spinor groups;
and we feel that the further study of this group will lead to a better understand-
ing of the geometry and physics of the orbit space of unimodular rows under
the action of the elementary subgroup.

2 The Suslin Matrices

Given two rows v, w € My ,41(R), » > 1, in ([58], §5) Suslin associates with
them a matrix S, (v, w) € Mar (R) of determinant (v, w)2 " = (v-w'),2" " whose
entries are from the coordinates of v, w upto a sign. We call these the Suslin
matrix w.r.t. v, w. They are particularly interesting to us when they are in
SLar(R), i.e. when (v, w) = v-w?t is 1. The explicit construction of the Suslin
matrix is defered for the moment.

Trimurthi of Suslin Matrices

So far the Suslin matrix has manifested in at least three different contexts:

e Establishing that the unimodular row (ag, a1, a3, ..., a’) can be completed
to an invertible matrix. See the seminal paper of Suslin [58]; especially Theorem
2, Proposition 1.6 and the beautiful §5.

e From studying the Koszul complex associated to a unimodular row. See
[65], Section 2, especially Proposition 2.2, Corollary 2.5.

e As orthogonal transformations on a certain space. See ([25], Corollary

12).

More recent developments

Two recent developments are briefly mentioned here. The reader should refer
to the cited texts for notations which have not been explained here.

The Fundamental property of Suslin matrices in [24] led the referee to suspect
a link between Suslin matrices and Spin groups. This connection was established
in the thesis of Vineeth Chintala and appears in [12]. We sketch some of his
ideas next.



For a commutative ring R, the hyperbolic space H(R") is the module R™ x
R™ endowed with a quadratic form ¢ such that ¢(v,w) == (v,w) = v - w’. To
this structure one can associate the Clifford algebra Cl,,(R) of the quadratic
form, which is isomorphic to the matrix ring Ma» (R). Vineeth Chintala proved
in [12] that the map ¢ : H(R™) — Man(R) given by

plo,w) = (sn_lgw,v)t SnlO(U,UJ))

induces a R-algebra isomorphism. Omne can then derive the Jose-Rao funda-
mental property of Suslin matrices from this.

The map Sy,—1(v,w) — S,_1(w,v)" can be used to construct an involution
x+— x* on Cl,(R) = Cly(R) ® Cla(R). One defines the Spin groups

Sping,(R) = {x € Cly(R) | xz* =1 and H(R")z~ ' = H(R")}.

This involution on Cl,, (R) corresponds to the standard involution on M« (R).
One can define the groups

Gn-1(R) = {g€ GLyn-1| gSg¥is a Suslin matrix, for all Suslin matrices S}.

The subgroup of G,,_1(R) consisting of those which preserve the quadratic
form on H(R™) is denoted by SG,_1(R). Vineeth Chintala proves that there
is an isomorphism Sping, (R) ~ SG,_1(R).

The subgroup generated by the Suslin matrices is thus the rational points
of a certain Spinor group.

The second new approach to Suslin matrices occurs in the work of Aravind
Asok and Jean Fasel in [|. Here there is an edge map interpretation for any
regular algebra (with which 2 is invertible) in terms of Suslin matrices. We
shall say a bit more about this later; but refer to [] for more details of this
approach.

Use of Suslin Matrices

The Suslin matrices have proved useful in several contexts. The main application
of Suslin matrices, so far, have been in the following directions:

e A unimodular row of the form (ag,ay,a3,...,a’) can be completed to a
matrix S, (v, w), with v = (ag, a1, as,...,a,), and w any row with (v,w) =1, of
determinant one. (We may also just write this as f,.(v) for brevity.)

Suslin mentions in ([58], §5) that a completion can be got by doing a series
of row and column operations on the matrix S, (v, w) to reduce it to size (r+1).
However, an explicit process (as suggested by Suslin, based on the sparseness of
the Suslin matrix) is far from clear, even in small sizes. A different reasoning
justifes this in ([65], §2). Undoubtedly, ([58], Proposition 1.6) also gives a neat
way of writing a completion, and also ties up with the Suslin matrix.



It would be both nice and useful if a good algorithm can be developed to
get a Br(v,w) from a S,(v,w). We believe that an appropriate G, (v,w) will
replicate the role played by S,.(v,w). The actual use of a “nice” (and explicit)
B2(v,w) can be seen in the works ([44], Lemma 2, Lemma 3), ([57], §5).

Note that it is unclear, and probably unjustified, to expect that any two
Br(v,w) got from a S, (v, w) are equivalent in E,;(R). Indeed, there seem to
be completions 3 of (a?,b,¢) which may not arise from a Sy(v,w): The first
completion of a unimodular row of the form (a2, b, c) comes from the theory of
cancellation of projective modules in the paper [69] of Swan—-Towber where an
explicit completion is stated in ([69], Theorem 2.1). Here are the two comple-
tions: Let aa’ + bb' + cc’ = 1.

a? b c a? b c
b+ ac’ %+ ba'd —a' +bc - |, | —b—2ac 2 a —bc
c—ab a +Vc +dced b2 Ve —c+2ab —d —b'c b2

Can the Swan-Towber method of computation be extended to give completions
of the universal factorial row, in view of Suslin’s theorem in [58]. Is there some
interpretation of those completions akin to the theory which Suslin has built.
(Note that both approaches are derived from an explicit computation to show
the transitivity of the group of automorphisms of a projective module P& R on
its unimodular elements.)

Let us commence on a different tack. Bass observed that the projective mod-
ule P, = ker(R*™ % R) corresponding to a unimodular row v = (v1,va, . . ., vay)
of even length always has a unimodular element, i.e. it splits of a free summand
isomorphic to R: w = (v, —v1,v4, —Vs, ..., —Vap, Vap—1) € P, and is a unimod-
ular row.

Raja Sridharan and Ravi Rao observed that if x2(v) = (v%,va,...,v2,-1) €
Umy,,—1(R) then the projective module Py, (,) has a unimodular element. (See
([38], pg. 120, Theorem 5.6) for a more general statement).

S.M. Bhatwadekar commented on seeing this that a unimodular row of the
form (a3, a1, az, a3, as,as) has two independent sections! T.Y. Lam (with inputs
from R.G. Swan) also began the study of Sectionable sequences in ([38], §5,
pg. 116) to make a preliminary study of this phenomenon.

Can one recover Suslin’s theorem on the completion of the ‘universal fac-
torial unimodular row’ by using such an argument? In particular, to begin
with, can one show that a unimodular row of the form (a$, a1, ..., as,) has two
independent sections? etc.

e Suslin used it in the computation of K-theory and K-cohomology
of group varieties SL,,, GL,, Spa,, etc. in [66]. We refer the reader to [66]



where Suslin showed that

Zlxy,...,Tn,Y1s-- -, Yn]
SK ~7
1( (i wiyi — 1) 7

with generator [S,—1((21,...,2n), (Y1,---,Yn))]. Is the group SL,(A4)/E,(A),
for A=Zlz1,..., %0, Y1, Yn)/ (X 1y zy; — 1) generated by [B,_1(v, w)], for
v,w € Umy, (A), with (v,w) = 1? (This may depend on n, but is it true atleast
in the metastable range n < 2d — 3, where d is dimension of A?)

¢ Patching information in set-theoretic complete intersection prob-
lems.

M. Boratyniski showed in [8] that an ideal I in a polynomial ring R over
a field can be generated upto radical by m = u(I/I?) elements, i.e. VI =
v (f1,--+, fm), for some f1,..., fmn € R.

This is the first recorded use of the matrices 3, (v, w) in the subject of Serre’s
program, followed by the Eisenbud—Evans program, which bridges properties of
projective modules over a ring and the efficient generation of ideals in that ring.
It replaces the homological methods used by Serre, and later by others like
N. Mohan Kumar, M.P. Murthy in this context. The book [22] gives a nice
introduction and survey of major previous literature on this topic.

Let us quickly recall M. Boratyriski’s idea: He says that if {x1,...,2,,} C I
with {Z1,..., %} generating the R/I-module I/I2, and if J is the ideal gener-
ated by (21, 22,23,...,2m~ 1), and I™~V' then v/J = v/I, and the projective

R- module got by taking the fibre product
P =R{" X, (1)) B4

maps onto J, for any ¢t € R with (1 —¢)I C (z1,...,2Zm). (Such a t is readily
found, and the fact that J is locally generated by the obvious m elements on
the open set D(1 — t), and by one element on D(t), is easily verified. This
information is ‘patched’ via Bp—1((21,...,Zm)).

By the Quillen-Suslin theorem ([40], [60]) P is free, and so J is generated by
m elements.

Thus, M. Boratynski encoded Quillen’s idea of local patching to ideals, and
pushed forward Serre’s program of projective generation of ideals; via a com-
pressed version of a Suslin matrix.

e Defining higher Mennicke symbols on orbits of unimodular rows.

R. Fossum, H. Foxby, B. Iversen defined, for n > 2, a Mennicke n-symbol

Um, (R) " SK4 R using the theory of acyclic based complexes. (We refer the
reader to [17]; a copy of which can be got by making a request.)

Let v = (a1,...,an), w = (b1,...,b,) € Umy,(R), with (v,w) = v-w" = 1.
The Koszul complex

X() = (..o AFR) B AR 5 )



is an acyclic based complex, with each X3(v) = AF(R™) a free module with
a canonical basis of exterior products e;; A ... Ae;,, ordered lexicographically.
External multiplication by w defines a contraction, say 8 for X (v).

Since (d + B)? = 1 + 2, and 3 is nilpotent, we get an isomorphism, inde-
pendent of choice of the contraction,

X(U)odd = @X2i71<v) — @XQ’L(’U> = X(”)even-
wi(v) = (=1)(" D[ + 8] € SKy(R)
Suslin interprets this map in ([65], §2) and showed that
wt(v) = [Sp—1(v,w)] € SK1(R).

(The reader may consult [46] where details are worked out.)

e Dual is not isomorphic: Let >, z;y; = 1. Let P be the projective

module corresponding to the unimodular rows (x1,...,2,). Then the dual P*
of P,i.e. Homg(P, R), is isomorphic to the projective R-module corresponding
to the unimodular row w = (gy,...,7,) = w.

It can be seen easily that P and P* are isomorphic when rank P is odd; in
fact, the rows v, w are in the same elementary orbit by a lemma of M. Roitman
in ([56], Lemma 1).

However, if n > 1 is odd then there are several approaches due to M.V. Nori,
R.G. Swan, who have independently shown (using topological arguments) that
P, P* are not isomorphic. For an exposition of this see the homepage of R.G.
Swan at [70], [71].

Together with these approaches, we gave an approach via Suslin matrices
following an argument of Suslin in [65]. We refer the reader to [47] where some
of the approaches are collated. We mention the approach via Suslin matrices

below: Let
%[xla e T2n—15Y1y - - - ay2n—1]

= 2n—1 :

(;%yz —1)

Suppose that vo = w, for some o € GLa,—1(R). Then

2n—1
wt (w) = wt (vo) = wt (v) + »_ (=1)'[r'o].
i=0
Since SK;(R) = Z, [0] = [San_2(v,w)]", for some r. Hence, [Alo] =
r[A"S2p—2(v,w)]. Therefore,
2n—1 o 2n—1 o
Yo DAl = Y (F)A Sana(v,w)]
i=0 i=0
= 7 WH(T1, T2, Ty s, T 1)

r(2n — 2)! wt(v).



Thus,
wt(w) = [Sop—2(w,v)] = (1 +7r(2n — 2))wt(v) = (1 + r(2n — 2)1)[S2n—2(v, w)].

But since v is of odd length, [Sa,—2(w,v) = [Son_2(w,v)!] = [S2n—_2(w,v)]!, by
the identities of Suslin (detailed a little later), and using the nomality of the ele-
mentary linear subgroup (see ([61], Corollary 1.4)). But Sa,—2(v, w)Sap, (w,v)t =
I, and so [S2,—2(v, w)] = [S2n—2(w,v)] L.

Thus, one gets (2 + r(2n — 2)!)wt (v) = 0. A contradiction except when
n=2r=-—1 O

e The Suslin matrices can be used to derive properties of the orbit
space of unimodular rows. Consider the following two principles:

* (Generalized Local Global Principle): Let v(X), w(X) € Um,(R[X]),
r > 3. Suppose that v(X), € w(X),E,(R,[X]), for all p €Spec(R), and
v(0) = w(0), then is v(X) € w(X)E,(R[X])?

* (Generalized Monic Inversion Principle): Let v(X), w(X) € Um,(R[X]),
r > 3. Let f(X) € R[X] be a monic polynomial. Suppose that v(X)sx) €
w(X)f(X)ET(R[X}f(X)), then is ’U(X) S IU(X)ET(R[XD?

Both the above questions were also raised by T.Y. Lam in ([38], Chapter VIII,
5.6, 5.11). We gave a partial answer in [46] where we showed that x2([v(X)]) =
X2 ([w(X)]), if r is odd, and x4([v(X)]) = xa([w(X)]), if r is even. (Here if
v=(v1,...,v,) € Um,(R) then x,([v]) denotes the class of the row (v},...,v,)
(under elementary column operations). This is shown to be well defined in [76]
by L.N. Vaserstein.)

e The Suslin matrices have thus been found useful for the study of unimod-
ular rows; which are associated to 1-stably free projective modules. Can such a
similar study also be done for any stably free projective module.

It is natural to expect that an analogous Suslin theory will develop for a pair
(p,a) € PO R, (¢,b) € P* @ R, with ¢(p) + ab = 1.

e Suslin studied the transitive action of the orthogonal group on rows
of length one in ([58], Lemma 5.4). The very existence of Ss(v,w) implies
that Og(R) acts transitively on the set of rows of length one, i.e. {(v,w),v,w €
Umy(R), (v,w) = 1}. In ([26], Corollary 4.5) we showed that SOs,(R) acts
transitively on pairs having the further property that

ol = {XQ([U')] if n is odd

2 x4([v']) ifnis even

Consequently, in view of Lemma 25 which comes a little later, if R is an affine
algebra of dimension d over a perfect C; field, or if R = A[X], A a local ring
in which 2 is invertible, in view of ([42], Theorem 1), then SOg(441)(R) acts
transitively on rows of length one.



e Bass—Milnor—Serre began the study of the stabilization for the linear group
GL,(R)/E,(R) for n > 3, where R is a commutative ring with identity. In [5],
they showed that K;i(R) = GLg+3(R)/E4+3(R), where d is the dimension of the
maximum spectrum. In [72], L.N. Vaserstein proved their conjectured bound
of (d+ 2) for an associative ring with identity, where d is the stable dimension
of the ring. After that, in [73], he introduced the orthogonal and the unitary
K;-functors, and obtained stabilization theorems for them. He showed that the
natural map

S(n,R S(n+1,R . .
Pnntl E((Z,R)) — E((ZJJ_LR)) in the linear case
; SR Sn+2.R)  therwise
Pn,n+2 ' Bp,R) E(mi2,R)

(where S(n, R) is the group of automorphisms of the projective, symplectic and
orthogonal modules of rank n with determinant 1, and E(n, R) is the elementary
subgroup in the respective cases) is surjective for n > d + 1 in the linear case,
for n > d in the symplectic case, and for n > 2d + 2 in the orthogonal case,
and is injective for n > 2d +4 in the symplectic and the orthogonal cases. Soon
after, in [75], he studied stabilization for groups of automorphisms of modules
over rings and modules with quadratic forms over rings with involution, and
obtained similar stabilization results.

The Suslin matrices have been found useful in the study of injective
stabilization for the K;-functor of the classical groups:

Let A be a non-singular affine algebra of dimension d > 1 over a perfect Cy-
field. In [50] it is shown that the natural map Sé“n”(%) — SéJ::ll((AA)) is injective
for n > d+ 1. In [6] it is shown that if (d + 1)!A = A, then the natural

map Sé):((f)) — ESSPIITEZ(?A)) is injective for n > d + 1. Similar results have also

been obtained in the case of the classical modules in [6]. The completion of
the universal factorial row, and H. Lindel-T. Vorst results in [39], [77] on the
Bass—Quillen conjecture, played a crucial role in proving these results.

In the symplectic situation, in [9] these results have been simplified to some
extent using a relative version of Quillen’s Local Global Principle in [1], cou-
pled with the Suslin completions of the factorial row. It is shown in [9] that
vEay, (R, I) = vESpa, (R, I), for any commutative ring R, and ideal I in R, and
for any unimodular row v €Um,, (R, T), n > 3. Using this one can recapture the
earlier results; and also show that if R be a finitely generated algebra of even
dimension d over K, where K = Z or a finite field or its algebraic closure, and
if o € Spy(R) with (I L o) € ESpy 5(R), then o is (symplectic) homotopic to
the identity. In fact, o = p(1) for some p(X) € Sp,(R[X])NESp 4, (R[X]), with
p(0) = I. Finally, all these results were improved in [20]; and optimal bounds
were obtained there for smooth algebras over an algebraically closed field by
using the the Fasel-Rao-Swan theorem in [15]. Results of such type are also
expected over a perfect field of cohomological dimension < 1; but not over fields
of cohomological dimension two, is demonstrated in [20], in view of N. Mohan
Kumar’s examples in [37] of non-free stably free modules of rank d — 1 over a
field of cohomological dimension 1.



The relative strengthening of L.N. Vaserstein’s famous lemma (in [67]) that
e1E2, (R) = e1ESpa, (R) done in [9] can also be deduced from it and the Excision
theorem of W. van der Kallen in ([31], Theorem 3.21), via the Key lemma for
Suslin matrices. In fact, one can even get the stronger vEs,(R) = vESp,,, (R),
for any unimodular row v €Umsy, (R), and any invertible alternating matrix ¢,
for an appropriate definition of ESp,,,, (R). It is an instructive exercise for the
reader to figure this out using the material in this text.

The study of injective stabilization is useful to answer a question of Suslin
in [64] regarding whether a stably free projective module of rank (d — 1) over
a (non-singular) affine algebra of dimension d over an algebraically closed field,
with some divisibility conditions, is free. This will be true for even dimensions
if the injective stability estimate for K;Sp falls to d — 1, over odd dimensional
(non-singular) affine algebras of dimension d over a perfect Ci-field. This will
be true in any dimension if the injective stability for K; will fall to d over a d
dimensional (non-singular) affine algebras over a perfect C;-field.

The latter was established in [15]; but as a consequence of establishing
Suslin’s question for non-singular affine algebras over an algebraically closed
field. (The contracted Suslin matrices played a vital role in its proof.)

e The Suslin symbol: In ([58], §5) introduced the groups G, (4). G,(A)
is the Witt group of nonsingular quadratic forms if » = 0 mod 4; G,.(A) is the
symplectic K; functor of the ring A if r = 1 mod 4; G, (A) is the Witt group of
nonsingular skew-symmetric forms if » = 2 mod 4; G, (A4) is the orthogonal K;
functor of the ring A if r = 3 mod 4.

One has the Suslin maps S, : Um,41(4) — G,(A) defined as follows:
Choose a w such that (v,w) =1, and set

) ISr(w,w)] if r =2k 41
Sr(v) = {[S,«(v,w) L]t = 2k.

For example, if » = 1 then the resulting map S; is precisely the well-known
Mennicke symbol which had an important role in the solution of the congruence
subgroup problem in [5]; for r = 2 Sy is the Vaserstein symbol introduced in
[67], and which was used to obtain some deep results on orbits of actions of
SL3(A) on Ums(A). Suslin has asked for the meaning and properties of these
maps. Our work in [26] was an initial attempt to understanding these maps
and see if we could get some properties. We mention some progress on these
questions below.

e Hermitian K-theory: One can reinterpret the groups G, (A) in the con-
text of Hermitian K-theory as developed by M. Karoubi and, more recently,
M. Schlichting. In [2], the authors show that these groups are avatars of higher
Grothendieck-Witt groups. As said above, we have G1(4) = KSp1(A) and
G3(A) = KO1(A). In Schlichting’s notation, one writes KSp;(A) = GWZ(A)
and KOi1(A) = GW{(A), where the letters GW stand for ”Grothendieck-
Witt” groups. These are bigraded abelian groups GW/(A) with i € Z and
j € Z/4. Suslin’s symbol Um,1(A) — G,.(A) reads then as a collection of



maps Um,;1(A) — GW]T(A). In the same paper, A. Asok and J. Fasel show
that Suslin’s computation of the group SK; of the ring

%[xla---7xn7y1a"'7yn]

O iy — 1)

refines in a computation of Grothendieck-Witt groups of A (with the price to
consider Z[1/2]-coeflicients). Indeed, one finds

A, =

GW{ T (Ary1) = GW(Z[1/2])

provided r > 1. There is an analogue of Quillen’s spectral sequence computing
K-theory in terms of codimension of the support in the theory of Grothendieck-
Witt groups (see e.g. [14]). Asok and Fasel show that in the case of the ring
A,41, an edge map in the corresponding spectral sequence is indeed an isomor-
phism. This allows to compute this edge map for any regular algebra (with 2
invertible) of dimension < 7 in terms of Suslin matrices.

e Study of orbit spaces, and classifying spaces: If R = C(X) is the
ring of continuous real valued functions on a topological space X then every
unimodular row v € Um,(C(X)), n > 2, determines a map arg(v) : X —
R" — {0} — S™~1. (The first is by evaluation, and the second is the standard
homotopy equivalence.) We thus get an element [arg(v)] of [X,S"71]. (Asn >
2, we may ignore base points.) Clearly, rows in the same elementary orbit define
homotopic maps. Thus, we have a natural map Um, (C(X))/E,(C(X)) —
[X, 571 = " H(X).

Note that J.F. Adams has shown that S”~! is not a H-space, unless n =
1,2,4, or 8. It is classically known that this is equivalent to saying that there is
no suitable way to multiply the two projection maps S"~1 x S"~1 in [S"~! x
Sn=1 87=1. However, under suitable restrictions on the ‘dimension’ of X we
may expect to define a product.

Henceforth, let X be a finite CW-complex of dimension d > 2. L.N. Vaser-
stein has shown that the ring C'(X) has stable dimension d. Now let n > 3, so
that S™~! will be atleast 1-connected. By the Suspension Theorem, the sus-
pension map S : [X;S" 1] — [SX;S"] is surjective if d < 2(n —2) + 1, and
bijective if d < 2(n — 2). Moreover, we know that [SX, S"] is an abelian group.
Hence, the orbit space has a structure of an abelian group. It is shown in ([32],
Theorem 7.7) that above map is a universal weak Mennicke symbol as defined
by W. van der Kallen in [32].

In the context of commutative rings, for n = 3 and d atmost 2, the orbit
space of unimodular rows modulo elementary action was shown to be bijective to
the elementary symplectic Witt group (denoted by Wg(R)) by L.N. Vaserstein
in [67] and for d < 2n — 4, to the universal weak Mennicke symbol by W. van
der Kallen in [32].

It would appear too strong to expect the bound to fall; and perhaps it
is, but the article [45] encourages us, as it shows (using Suslin matrices) that
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there is a nice group structure on orbits of squares of unimodular rows when
dim(R) < 2n — 3.

We say that the orbit space Um,(R)/E,(R) has a Mennicke-like (or nice)
structure if

[(a,az2,...,a.)] % [(byaz,...,a.)] = [(ab,as,...,a)]

In ([18], Theorem 3.9) it is shown that if A is an affine algebra of dimension
d over a perfect field k, of characteristic # 2, and with c.d.o(k) < 1, then if
r =d+ 1, the van der Kallen group structure on it defined in [31] is Mennicke-
like.

In [45] the Suslin matrix approach enables one to recapture this theorem
when k is algebraically closed; and also to improve upon it for » = d, when k is
a finite field. In fact, we realized later that the Suslin matrix approach in [45]
would also enable us to recapture ([18], Theorem 3.9). We leave it to the reader
to verify these details.

As pointed out in ([45], due to the strong results of J. Fasel in [16], for a
smooth affine algebra over a field k, of characteristic # 2, and with c.d.o(k) < 2,
the group structure on the orbit space Umgy1(A)/E4y1(A) is nice. Is this the
optimal situation for smooth affine algebras over a field?

The recent progress we have made is to relate these two studies, via the
Suslin symbol. We briefly sketch this next.

e Defining group structures, Witt group structures on orbits of
unimodular rows

One can define a Witt group Wgum(R), and a map from the orbit space
Um, (R)/E,(R) — Wgum(r) sending [v] to [S,—1(v,w)], for any w, with
(v,w) = 1. This map is a homomorphism, and is a Steinberg symbol if dim(R) <
2n — 3. It is also onto when dim(R) < 2n — 3. One can commence here as the
variant of the Mennicke-Newmann lemma as in ([33], Lemma 3.2) is available.
We expect it to also be injective under these conditions. This is mainly due to
the inherent symmetry of the Suslin matrices.

Note that these would mean that the orbit space would then have a nice
abelian Witt group structure under the condition dim(R) < 2n — 3; which is
an improvement on the condition dim(R) < 2n — 4 in the theorem of van der
Kallen in [32] stated above. More details will appear in [27], when n is even.

o In ([58], §3) Suslin points out that the fact that the universal factorial row
can be completed can be used to find a completion of a linear unimodular row of
length (r+1), provided r! is a unit. In fact he shows that there is a factorial row
in the elementary orbit of any linear unimodular row. At the end of §5 he poses
Problem 4 which reposes a question posed by Bass in [4], with an additional
rider. We now know this as the Bass—Suslin conjecture; and it is one of the
central open questions of classical algebraic K-theory. Let R be a local ring.
Bass asked if Um,(R[X]) = e1SL,(R[X]). Suslin expects this if 1/(r — 1)! € R.
More generally, due to Suslin’s example, one would expect to find a factorial
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row in the elementary orbit of any unimodular row over a polynomial ring over
a local ring.

The results of M. Roitman in [56], and R.A. Rao in [41],[42],[43] bear testi-
mony to this. In [41] [42], [43] unimodular polynomial rows are studied via the
Vaserstein symbol. In [27] a similar study is undertaken via the Suslin symbol.
This study promises to solve this question in the metastable range; however,
one expects that if one couples this with the ideas developing in [55] then one
could get a complete picture, based on the beautiful symmetry of the Suslin
matrices. More precisely, the structure of the Suslin matrix forces a certain
positioning; and the argument in [27] indicates that some positionings (enforced
by the positioning of the coordinates of a Suslin matrix) are suitable to enable
us to lift the yoke of restriction of injective stability estimates of K; so far.

Historical development often gives a clue to the route one should follow.

The study of completions of unimodular rows over a commutative noetherian
ring R of dimension d gives a hint of things to come. It began with J-P. Serre,
followed by H. Bass, ideas of gemeral position; which were taken further by
Eisenbud—Evans. L.N. Vaserstein started studying group structures on orbits
of unimodular rows using Witt groups. But the paper [67] already contains
enough of non-stable algebraic K-theory arguments on a unimodular row; which
were expanded upon by W. van der Kallen in [31], [32]. Thus, the arguments
of [48] give preliminary historical evidence of getting completion of unimodular
polynomial rows in dimension three by a stable argument. Injective stabilization
plays an important role here; but we suspect that this happens because we have
not done the linearization in a proper way which preserves the anti-symmetry.

It is this combination of ideas that we strongly advocate in the polynomial
case; doing stable linearization, preserving the inherent symmetry of the Suslin
matrices, and taking n-th roots, we believe should give a ‘polynomial time’
feedback completion algorithm at the non-stable level. We hope to be able to
present these ideas in [55].

3 Study of the Suslin matrix

We begin with the study of the alternating matrices; which gives a good role
model to begin the topic.

The alternating matrix V (v, w)

Let v = (a,b,¢), w = (a’, ¥, ) with (v,w) = aa’ + b’ + ¢’ = 1.
We consider the 4 x 4 alternating matrix V (v, w) of Pfaffian one:

0 a b c

V(v,w) = b 0 a
a
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We wish to analyze the action of € € E4(R) on V (v, w) by conjugation.

We first recall the Cohn transformations of a row below:

Definition 1 Letv = (ag,a1,...,a,), w = (b, b1,...,b.) € R™T with (v, w) =
1. We say that the row

v* :’UCZJ()\) = (ao,...7ai+)\bj,...,aj —)\bi,...,ar),
for 0 <iz#j <r, is a Cohn transform of v w.r.t. the row w.

a

P.M. Cohn in [13] had shown that the matrices Io + A (b

) (b fa) were not

elementary matrices in general.

It was shown in ([24], Lemma 2.1) that the Cohn orbit (got by a finite number
of successive Cohn transforms) is the same as the elementary orbit when r > 2.
Moreover, see ([34] Theorem 3.6), if (v, w) = (v', w) = 1 then v’ can be got from
v by a finite number of Cohn transforms w.r.t. w.

Let us get back to analysing the action of an elementary metrix on an alter-
nating matrix.
One has the following identities:

Ein(\V (v, w)E12(\) = V(vCia(N), w),

Eis(\)V (v,w)E13(\)" = V(vCpa (=), w),
BNV (v, w)E14(N)' = V(vCo1 (M), w), 0
Eoy(AN)V (v, w)Ea1 (N = V(v,wCa1 (M),

B3NV (v,w)E31(\) = V (v, wCa(—N)),

Eun ANV (v,w)Ey (N = V(v,wCio(N))

Equations (1) describes completely the action of E4(R) on an alternating
matrix V (v, w).

We may consider the Vaserstein space V' of dimension 6 consisting of all 4 x 4
alternating matrices over R. The above relations associates a linear transforma-
tion T, of V with any o € SLy(R) by T,(V(v,w)) = oV (v,w)c’. The matrix

of this linear transformation w.r.t the usual ordered basis eq,...,eg is not or-
thogonal. However, with respect to the following permutation of the standard
basis e1, ..., eg namely e, es, e3, €5, —€5, €4 We get

E12($> — E@Q(.’L‘)E53<—l’) Egl(ai) — E26<$)E35(—$)

Elg(x) — EGl(—.’E)E43($) Egl(fﬂ) — E16($)E34(—£L’)
E14(I) — E51(7I)E42($) E41(117) — E15(I)E24(1‘)

The images are all elementary orthogonal matrices. In particular, the matrix

of T,, will be an orthogonal matrix. One observes also that the map E4(R) is onto
EO4(R). This induces an injection of the quotient groups SL4(R)/E4(R) —SO4(R)/EO4(R).

13



Let us compute T,,. It is the matrix of A20. When ¢ = V (v, w) something
¢

t
interesting is revealed: the matrix is (14 — (:;t) (w v))(Iy — (Z%) (ex e1)).
1
This is recognizable as the product of two reflections 7, ) © T(c, ¢,)- (See later
for the definition.)

Is there a similar ‘larger sizes’ analogue? The observations above are repli-

cated below with the Suslin matrix substituting for the alternating matrix
V(v,w).
Remark: When we did calculations with 6 x6 alternating matrices of Pfaffian one
we found that the corresponding linear transformations were not orthogonal, and
so the theory is dissimilar. It seems worthwhile to investigate what is happening
here.

The Suslin matrix S, (v, w)
We now describe the Suslin matrices in more detail.

The construction of the Suslin matrix S, (v, w) is possible once we have two
rows v, w. These matrices will be invertible if their dot product v-w? = 1. (The
rows are then automatically unimodular rows.) Suslin’s inductive definition:
Let

v = (ag,a1,...,a.) = (ag,v1),
with v = (ag,...,a.),
w = (bo,bl,...,br) = (b07w1),

with wy = (b1,...,b.). Set So(v,w) = ag, and set

Sp(v,w) = <_Sa012r_1 Srl(vl’w1>).

r—1(wy, 1)t bolpr—1

Suslin noted that S,(v,w)S,(w,v)! = (v w')Iyr = Sp(w,v)'S,(v,w), and
det Sy (v, w) = (v-w'),2 " for r > 1.
Thus the positions of a; and b; in S, (v, w) as follows: For 1 <i <r —1,

1. The positions of ag in S, (v,w) is given by (k,k), 1 < k < 27! and the
positions of by in S,.(v,w) is given by (k, k), 2" "1 +1 <k <27

2. The positions of a, in S, (v, w) is given by (2k—1,2" —2k+2),1 < k < 27!
and the positions of b, in S,.(v, w) is given by (2k,2"—2k+1),1 < k < 2771

3. The positions of +a; in S, (v, w) is given by
(22R27 1 45, 24+ (27 — k= 1)27)27 1 ),

where 0 < k<271 —1,1<j <2010
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4. The positions of —a; in S, (v, w) is given by
(B+2%k)2" 45, (14 (271 =k —1)22)27 1 4 ),
where 0 < k<271 —1,1<j < or— 18
5. The positions of +b; in S, (v, w) is given by
(T+ @27 — k=122 1 45, (34 2%k)2" 1 4 4),
where 0 < k<271 -1, 1<j<2r— 178
6. The positions of —b; in S,.(v,w) is given by
(24 (271 — k — 1)22)27 1 4 j, 22k 10 4 ),

where 0 < k<2071 -1, 1<j<2r-1¢

The Suslin forms J,

To understand the nature of the shape of the Suslin matrices we recall Suslin’s
sequence of forms J,. € My-(R) given by the recurrence formulae:

1 forr=0
Jr=<J_1 L —J._1, forreven,
Jr1 T —J._1, forr odd.

(The English translation wrongly says J, = J._1 L J._1 when r is even.)

a 0 . 0 «
(Here a L 8 = 0 , while a TS = 3 0 2

How did Suslin think of these forms? What will the form be if the ‘Suslin
matrix’ is constructed by a slightly different basis; say by the usual lexicographic
ordering of the basis to describe the map @;oqd A’ R" — @jeven A’ R" in the earlier
construction. We give a possible approach: Observe that J,. = Hfill Sr(ei,e;).
The reader can verify this by an easy induction on 7. (Or can refer to [46] where
it is proved.)

It is easy to see that det J, = 1, for all r, and that J! = J ! = (-1) Iy
Moreover, J,. is antisymmetric if r = 4k + 1 and r = 4k + 2, whereas J,. is
symmetric for r = 4k and r = 4k + 3.

We know from Suslin that he was unaware of M. Krusemeyer’s explanations
in [35] [36] for the Swan-Towber completion of (a?,b,c). The explanations of
M. Krusemeyer seem to be adequate only in the case of alternating forms. (Are
we wrong in saying this?)

Suslin recognized the need to analyse the shapes of the Suslin matrices
Sy(v,w). He realized that the shapes satisfied similar properties according to
the length (r + 1) of the row.

r(r+1)
2
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In ([58], Lemma 5.3), it is noted that the following formulae are valid:

for r=4k : (S.(v,w)J,)" = S.(v,w)J,;
for r=4k +1: S, (v,w)J,.S, (v, w)" (v-w')J,;
for r=4k +2: (S, (v,w)J,)! = —S.(v,w)J;
for r=4k + 3 : S.(v,w)J,.Sr(v,w)" = (v-w")J,.

We call these the Suslin identities. These identities are the core of the
underlying four physical configuration spaces in which unimodular rows live.

These identities may be easily verified by induction on 7. Alternatively, one
can also observe it after noting that for r > 1, and 2 < i <r+1, S,(e;, ei)_1 =
S.(ei,e;)t = —S.(ei,e;), Sr(ei,e;)? = —Iyr, and det S,.(e;,e;) = 1, and the

following lemmas:

Lemma 2 Let v = (ag,a1,...,a.), w = (by,b1,...,b,) € My, y1(R), 7 > 1.
Then for 2 <i<r+1,

Sr(eiv 61')57«(?), w)Sr(eia ei)_l = Sr(v/» w'),

where
v = (bo,fal,...,70,2'_2,()@‘_1,7(1@‘,...776LT), and
= ((lo,*bl,...,7()1'_2,(11‘_1,7{)1',...,7br).

Thus, one has

Sy(v,w)t if r even

1 _
JeSe(v,w0) I = {Sr(w,v) if 7 odd.

The Suslin identities show that unimodular rows of length r 4+ 1 will have
properties depending on [r] modulo 4. We have already seen an instance of a
property which depends on the parity of » when discussing the isomorphism of
a projective module corresponding to a row and its dual projective module. Is
there such an example of a property for unimodular rows which depends on the
[r] modulo 47

When searching for an algorithm to create a f,.(v,w) from S,(v,w) one
should also keep the following question in mind. One knows that there is a
Br(v,w) € Syp(v,w)Eqr(R). When r is odd, is there a 5, (v, w) € S, (v, w)GEar(R),
where GE = ESp when r = 4k + 1, and GE = EO when r = 4k + 37 (The
“right” ESp, EO is part of the query.)

The Fundamental property and the Key Lemma

We give a simple proof of the Fundamental property of Suslin matrices, which
first appeared in [24].

Lemma 3 Let R be a ring with 1. Let S be a subset of R satisfying

1. a € S implies —a € S.
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2. a,be S impliesa+beS.
3. a €S implies a®> € S.

Then a, b € S implies ab+ ba € S, 2abc € S.
Proof: ab+ ba = {(a +b)? — a®} — b2 € S. Hence,
{a(ab + ba) + (ab+ ba)a} — (a®b+ ba?) = 2aba € S.

We now state and prove the important Fundamental property satisfied by
the Suslin matrices.

Corollary 4 (Fundamental property) Let Sy(s,t), Sr(v,w) be Suslin matrices.
Then

S (5, 1)Sr(v,w)S(s,t) = S.(v',w)
S (t,8)Sr(w,v)S,(t,8) = Sp(w',v),

for some v',w' € My ,41(R), which depend linearly on v, w and quadratically
on s, t. Consequently, v' - w" = (s t')2(v - w').

Proof: Take R =Mar(R), and let S be the subset of all Suslin matrices above.
Take a = S,-(s,t), b =S, (v, w). Then 2aba € S. A generic argument will enable
us to assume that 2 is a non-zero-divisor, and allow us to conclude that aba € S.

The last two assertions will need the more specific argument given in ([26],
Lemma 2.5).

Remark 5 L. Avramov had independently observed a similar argument to prove
the Fundamental property of Suslin matrices.

The Key Lemma

Recall that we were led to the above Fundamental property in ([24], Corollary
3.3) by the Key Lemma via the methods of commutative algebra. We next recall
the Key Lemma which is actually equivalent to the Fundamental Property. (We
refer the reader to the thesis of Selby Jose ([23], Chapter 4, Lemma 4.3.16) where
this equivalence has been detailed).

The Cohn transforms were first sighted in the work of L.N. Vaserstein in
[67] when he considered the action of an elementary matrix on a 4 x 4 invertible
alternating matrix as described earlier. His analysis led us to the key lemma
below:

Notation. For a matrix o € My (R), we define a'°? as the matrix whose entries
are the same as that of a above the diagonal, and on the diagonal, and is zero
below the diagonal. Similarly, we define a?°t

For simplicity we may write af for af°? ab for a?’ and a” for a transpose.

Moreover, we use o't for at°? or a?°!
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Lemma 6 (Key Lemma)
Let v, w € My ,41(R). Then, forr>2,2<i<r+1, A €R,

S, (vEn (=N, wE;;(\) = Sp(e1,e1E1i(N)PS,(v,w)S,(e1, e1F15(N)) 2%
Sr(WE1i(A),wE;1 (X)) = Sr(elEli()\)7el)bOtSr(v,w) (e1E1i(N), e1) P
S (vCoi—1(=A),w) = Sp(e1Ey(N),e1)!P S, (v,w)S, (er E1i(N), e1) b
Sp(v,wChi_1(=N\)) = Sp(e1,e1E1i(N)*1S, (v, w)S,(e1, e1 E1i(N))ioP

In view of its own importance we wish to record the useful observation which
led us to the proof of the Key Lemma given in ([24], Lemma 3.1):

Lemma 7 Letv, w, s,t € R™"! and letv = (ag,ay,...,a,), w = (bg,by,...,by).
Then

Sr(v,w) + S (w,v)
S (5,1)S,(w,v)" 4+ Sp.(v,w) S, (¢, 5)" {{s,w) + (v, t)} ar.
Sp(w,v)' S, (s,t) + Sy (t, 8)'S, (v, w) {(s,w) + (v, t) }Iar.
Proof: This is the usual bilinear consequence of the quadratic relation
S (v+s,w+t)S(w+t,v+s) = (v+s,wtt)o
= {(v,w) + (v,t) + (s, w) + (s,t) }Hor

The relations above reminds one of the relations in a Clifford algebra.

{(LQ + bo}Igr .

Commutator Calculus

Finally, we record a few interesting relations we got in ([24], Lemma 3.6) by
use of the Key Lemma: This is the Yoga of commutators in the elementary
unimodular vector group. As is known, a proper handle of this, can lead one
to understand the quotient group of the Suslin unimodular vector group by its
elementary unimodular vector group, better. In fact, it is eventually shown that
this is a solvable group, using the methods of A. Bak in [3]. (See below for the
definitions, and indications of a proof.)

Lemma 8 Let2<i#j<r+1, andlet A\ = —2xy. If

a = [Sy(e1Evi(z),e1),Sr(e1E1;(y), e1)),
o = [Sr(erErj(—y),e1), Sr(e1Eri(—x),e1)]
then o = a1, and S, (vC;_1;_1(\),w) = aS,(v,w)a™t;
B = [Si(er,e1Eri(x)), Sr(e1,e1E15(y))l,
B = [Sr(erErj(—y),e1),Sr(e1, e1E1(—x))],

then 8* = 71, and S, (v,wCi_1;_1(N)) = BS,(v,w)B~;

gl [Sr(e1E15(), e1), Sr(e1, e1E1:(y))],
v = [S(er,e1E1i(—y)), Sr(e1Brj(—x), e1)],
then v* =~71, and S, (vE;j(\),wEj;(=\)) = vS,(v,w)y.7!
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The Suslin Vector space

It is easy to see that the set
S = {5, (v,w)|v,w € M1,4+1(R)}

is a free R-module or rank 2(r + 1). For a basis one can take seg, ..., seq41,
S€y, - ., Seryq, where se; = Sp(e;,0), sef = 5,.(0,¢;), for 0 < i < 7. We shall
call this the Suslin space.

The Suslin Matrix Groups

Definition: The Special Unimodular Vector group SUm,.(R) is the subgroup of
SLor(R) generated by the Suslin matrices S, (v, w) w.r.t. the pair (v, w), with
v € Um,41(R), for some w with (v,w) =v-w’ = 1.

Remark 9 One can analogous to the linear case, define the Elementary Uni-
modular vector subgroup EUm,(R) of SUm, (R) generated by the Suslin matri-
ces Sy (v, w), with v = ey¢e, for some € € E,;1(R), and with v - w’ = 1.

Proposition 10 (Center of SUm,(R)) ([26], Corollary 3.5)
Let R be a commutative ring. The center Z(SUm,(R)) of the Special Unimod-
ular vector group SUm,.(R) consists of scalar matrices ular. Moreover,

I : 2=1 if
Z(SUmT(R)):{{u2 u€ R, u },  if r odd

{ulyr v € Ryu* =1}, if r even.

Hence Z(SUm,.(R)) C EUm,(R).

Commutator Calculus (contd.)

There is yet another set of generators for EUm,(R), viz. Sy(e1E1(x),e1),
Sr(e1,e1F1i(y)), and Sy.(e;, e, E:1(a)), Sp(e; Ein (D), e;), for2 <i <r+1,z,y,a,b €
R. This was shown in [24], via the Key Lemma 6 and Lemma 13.

We record the commutator formulae in EUm,.(R)* next: We use the conve-
nient notation that forr > 1,1 <i<r+1, A € R,

E(e1)(\) = Iy = E(e})(\)
E(e;)(A) = Sr(erEri(A),er); i>1
E(e;)(A) = Sp(er,erEri(N)); i>1

(If we wish to stress the size we will write E,.(e;)(\), E.(ef)()\)). !

7

!The definition of E(e1)()\) was erroneously defined as Alyr—1 L A7 51 in [24].
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Proposition 11 Forr > 2, \,u € R, ¢; = e; orej, dj = e; or €}, we have,
for2<i<j<r+1,
[E (Ci)O‘)t7 Er(dj)(ﬂ)b]
[Er1(cic)N Era(dj-) ()] L [Eroa (i) (N Broa(di1) ()]
= al---1aq,
| S ——
21=2 times

where

o= { {Br—it1(djit1) Q)P L Er_ipa(dj—ign)(=A)"' ) if ¢ = e,
{Er_ip1(dj_ix1) Aw)*" L By iyi(djigr)(=Apw)'P} if ¢; = ef.

We next calculate the triple commutators:

Lemma 12 Forr>2,2<i#j<r+1, \,u,v € R,

(©) [[E(e) (NP, E(e;) ()", E(e]) ()] = E(e;) (M)
(i) [[E(e])(N)'°P, Ble;)(1)*"], E(es) (v)"*] = Ee;)(Apv)?
(i) [[E(e:)(N)*°P, B(e;) ()], B(e) (V)] = E(e;) ()
(iv) [[E(e))(A)P, E(e5)(1)*"], E(eq) ()] = E(e}) (M) *

The Key Lemma makes us consider the subgroup EUm,.(R)? of Eor(R)
generated by elements of the type S, (e1 E1;(z), e1)®, Sy.(e1, e1 Eri(z))*. In view
of the Key Lemma it is clear that EUm,.(R) C EUm,(R)®.

Via the triple commutator laws, one gets the following relations, which prove
the fact that EUm,(R) = EUm,.(R)®.

Lemma 13 ([26], Lemma 4.9)

Forr>2,2<i#j<r+1, and X € R.
Sr(elEli(/\),el)wp = r 61E1]( ) 6’1)5 ( — )\Gj +6i,81)ST(61E11‘(—1),61)
(I —=Xe1 + Xej +ei,e1 +e;)Sr(e1 —ei,e1 —ej)
(1+XNer — Aej,er +¢€;)Sq(e1,e1 Er5(—1)),

n

T

n

r

S, (e1Eri(N),e1)? = S.(er,e1E1;(—1))Sr((1+ Ney — Aej,er +¢;)
Sp(er —ejer —ej)Sr((1— Aer + Aej + e, e1 + ¢;)
S
Sq(e1,e1Ey(\)P = S, e1F1;(—1),e1)Sr(e1 + €5, (1 + Ner — Aej)
Sp(er —ej,er —e;)Sr(er + €5, (1 — Ner + Aej +¢;)
Sy(e1,e1E1;(—1))Sr(e1,e1 — Aej + €;)Sr(e1, e1E1;(N)),

S’T(el,elEli()\))bOt = r(€1 elElj( ))S (61761 —)\ej +€i)ST(€1,€1E1i(—1))
rler+ej, (1 —XNer + Xej +¢€;)Sr(e1 —ej,e1 —e;)

rler+ej, (1+ Nep — Aej)Sr(e1 Eyj(—1),e1)

»n »n

S
(
(
(
(
r(e1E1i(—1),e1)Sr(er — Aej +e;,e1)Sr(e1Er;(N), e1)
(
(
(
(
(
S

(Note that the alternate relations are got by reversing the order).
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The first step in computing the center Z(SUm,.(R)) is to show that it consists
of scalars. We give a different proof than in [24] of the fact that Z(SUm,(R))
consists of scalar matrices. We use the fact here that EUm,(R)*” = EUm,.(R),
for r > 1.

Lemma 14 Let A € Ma:(Mat(R)), t > 1, s+t =r be a diagonal block
matriz, where the alternating diagonal blocks are the same. If A commutes with
E,(es41)(1)'P and E,(ei 1)(1)[P then A € Mays+1(Mai—1(R)) is a diagonal
block matrix whose alternating diagonal block entries are same.

Proof: Let (a11 alg), (a33 a,34) € My:—1(Ma(R)) be the two, perhaps dif-

a21  A22 43 Q44
ferent, diagonal blocks of A. Compare the (1,2%)-th, (1,2°—1)-th, and (2,2°—1)-
th block entries of A, (e511)(1)"P and E,.(es4+1)(1)'°P A we get as; = 0, azq = 0,
and aq1 = agg respectively. Compare the (1,2%)-th, (2,2°)-th, and (2,2° — 1)-th
block entries of AE, (eX,1)(1)!? and E, (e}, ,)(1)"P A we get a12 = 0, age = aua,
and ag3 = 0 respectively. Hence A € Myst1(My:-1(R)) and is a diagonal matrix
with alternating entries equal.

Lemma 15 Let A € Mar(R) be a diagonal matriz with equal alternating diag-
onal entries. If A commutes with E.(e,41)(1)°P then A is a scalar matriz.

Proof: Let a1; and age be the two different diagonal entries of the matrix A.
Compare the (1,27)-th entry of AFE,(e,+1)(1)*? and E,(e,+1)(1)!PA, we get
a11 = ase. Hence A is a scalar matrix.

Proposition 16 (Center of SUm,(R))
Let A € Mar(R). If A commutes with every element of SUm,.(R), then A is a
scalar matriz.

Proof: Since SUmgy(R) = Sly(R), the result is clear for r = 1. So let r > 2. Let
us write A = (a;j)1<i,j<4 in block form. By comparing entries we observe that

(1) E.(e3)(1)PA = AE,(e3)(1)%°P implies a1z = azz = aq1 = a42 = ag3 = 0,
(22 = G44,

(2) Er(ez)(l)tOpA = AET(GQ)(].)tOp 1mphes a1 — A31 — Q34 = 0, a1 = ass,
(3) Er(ez)(l)bOtA = AEr(ez)(l)bOt implies a13 = A14 = Q23 = O7 and
(4) E.(e2)(1)**A = AE,(e3)(1)"* implies azq = 0.

Hence A € May2(Msy-—2(R)) is a diagonal block matrix with alternating diagonal
blocks same. Apply Lemma 14 r — 2 times and conclude that A is a diagonal
matrix with alternating entries same. Now apply Lemma 15 to get the desired
result.

Corollary 17 An element in Mar(R) which commutes with E(c)(1)°P  for
c=e;ore,3<i<r+1, and E(d)(1)!* d=eq ore}, is a scalar matriz.

Proof: Obvious from the proof of Proposition 16.
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An involution on SUm,(R), r even

The case when r is even; where the involution can be defined.

Let a = H?:lsi be a product of Suslin matries S; = S, (v;, w;), and let a*

denote Hllzn Si. If r is even, then o — o* is a well defined anti-involution of

SUm,(R): By Suslin’s identities,
S, (v,w) = J,.Sp(v,w) It

Hence, a* = J,a!J 1, and we are done. From this, it follows that Z(SUm),.(R) =
{uly-|u? = 1}, when r is even.
We now discuss the case when r is odd; where we showed that there is an

ambiguity to define the involution.

In ([26], Corollary 3.2) we show that if Ior = Sp(vy,w1)... S, (vg, wy), for
some (v;, w;) =1, for 1 < i < k, then S, (vg, wy) ... Sr(v1,w1) = ular, for some
unit v with «? = 1.

Moreover, in ([26], §5) we show that given a unit v with u? = 1, we can find
Sy (vi, w;), with (v, w;) =1, 1 < i < k, for some k, such that

Iyr = S.(vy,w1)...S(vg,wg)
ulyr = Sp(vg,wg) ... Sq(v1,wy).

Thus, a* is defined upto a unit factor when r is odd. This fact is useful to
compute Z(SUm),(R) when r is odd.

Suslin matrices, Orthogonal transformations

The Fundamental property of Suslin matrices enables one to define an action of
the group SUm,.(R) on the Suslin space. One associates a linear transformation
T, of the Suslin space with a Suslin matrix g, via

TQ(x?y) = (1}/, y/)a

where ¢S5, (x,y)g* = S.(2',y"). Moreover, if g is a product of Suslin matrices
Sy (vi,w;), with v; - w} = 1, for all i, then Ty € Og(,41)(R), i.e.

(Ty(v,w), T,y(s,t)) = ((v,w), (s5,8)) =v-w' + 5"

Translating the Fundamental identities

Theorem 18 ([26], Corollary 4.2) The above action induces a canonical homo-
morphism ¢ : SUm,.(R) = SOq11)(R), with

SD(S’I’(,U7 ﬂ))) = TST(U,w) = T(v,w) © T(ere1)s
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where T, ) is the standard reflection with respect to the vector (v,w) € R2(r+1)
given by the formula

T(v,w)(svt) = (v,w)(s,t) — ({v,t) + (s,w)) (v, w).

The matrix of the linear transformation was also calculated in ([23], Chapter
5, Lemma 5.2.1).

Lemma 19 Let R be a commutative ring with identity. Let v,w € Um,41(R),
then the matriz of the linear transformation T, (,..) with respect to the (ordered)
basis {Sr(e1,0), Sr(e2,0),...,S-(€r+1,0),5:-(0,e1),5:(0,e2),...,5:(0,er41)} is

(I — (v,w)t(w,v)) (I — (e1,e1) (e, 61)) .

In particular, for v = eie, w = eﬁrl for some ¢ € SL,11(R), the matriz of
T, (v,w) s the commutator [st Le 1, (I—(er,e1)t(eq, 61))].

Elementary orthogonal matrices and reflections

Let 7w denote the permutation (1 7+ 1)...(r 2r) corresponding to the form
I, TI,.. The elementary orthogonal matrices over R is defined as
oeij(z2) = Iy + zeij — zer(j)n(i), if @ # 7(j) and i < j,

where 1 <i# j <2r, and z € R.

The elementary orthogonal group EOs.(R) is a subgroup of SOg,.(R)
generated by the matrices oe;;(z), where 1 < i # 7(i) # j < 2r, and z € R.

We showed in [24] that every elementary orthogonal transformation can
be written as a product of reflections. In fact, the standard generators of
EUm, (R)™ map onto the standard generators of EOg(,;1)(R), when r is even.
Now apply:

Proposition 20 Let A € R. Forr >2,2<i# j<r+1, and j # w(i), one
has, w.r.t. the splitting given in Lemma 18,

0e1i(A) = T(ey—ejer) © T(—(1-Ner+es,—er+re;) © T(er—ejrer—es)
07(7(1+)\)81+6]‘,7617}\6]‘+6i) o T(el,elfei) o T(fel,fel+)\ej+ei)
OT(er,e1—Xe;) © T(er,er) — TSr(elvelEli(_)‘))vtop
0€i1(A) = T(eyer—e;) © T(—er—Aej— (14N er+e;) © Tler—eser—e;)
OT(—e1+rej+tei,(A—1)er+e;) © T(er—ei,er) © T(—e1—Aej+ei,—er)
OT(er+Aesier) © Tlerser) = L8, (er Bri(A),er) ot
Oew(l)i()‘) = T(er,e1—Xej) O T(—er,—er1+Aej+e;) © T(er,er—e;)
OT(—(14+N)e1+ej,—e1—ej+e;) © T(er—ej,e1—e;)
OT(A=1)er+ej,—ert+Ae;) © T(er—ejner) © Tler,er) = L8, (er,e1Fri(~N)),bot
0€;r(1) (>\) = T(ei+Xej,er) O T(—e1—Aej+e;,—er) © T(er—es,er)
OT(—ei1+Aejtei,(A—1)ei+e;) © T(er—ei,e1—e;) © T(—e1—Aej,—(1+N)e1+e;)

OT(e1,e1—ej) © T(er,er) = L8, (e1Brs () er).tor
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We refer the reader to the Appendix where we show how the mathematical
software MuPAD helps in the computation of composition of reflections.

Kernel of ¢ : SUm,(R) —SOy,41)(R)

We compute the kernel of the map ¢, and show that it consists of scalars ulor,
with u? = 1. This follows from:

Lemma 21 Let R be a commutative ring in which 2 is invertible. Let a €
SUm,.(R). Suppose that oS, (v,w)a* = Sy(v,w), for all Sy(v,w) € EUm,(R).
Then a* centralizes EUm,.(R). Consequently, « is a scalar ulsr, for some unit
u € R, and a € Z(SUm,.(R)).

Note that in the above statement we have replaced SUm,(R) by EUm,(R) in
([26], Lemma 4.7). This is possible due to the Corollary 17.

The above lemma is really the key to verifying formulas relating to the action
of an element of SUm,.(R) on a Suslin matrix S, (v, w).

Computational techniques in SUm,(R)

We illustrate different computational techniques which help to prove the rela-
tions in the group EUm,(R), etc. Each method has its own merit. Here we
collate five such methods.

(1) Direct Computational Method: In this method we directly evaluate
both sides of the relation using the properties of Suslin matrices as in
Lemma 6, and show that they are equal.

(2) Circle Type Method: In this method we arrange the matrix block
entries in a particular way. The arrangement helps us to do the matrix
multiplication easily; as well as gives an inductive framework. We now
define this particular type of arrangement in the following definition.

Definition 22 Let R be a commutative ring with 1. For a, B € Ma(M,,(R)),
r>1, say a = (all 0412)’ 8 = (ﬂn 512), where each o;j, Bi; €

Qo1 022 B21 Paa
M, (R), 1 < i,57 < 2. We denote by a« ® B (read as ‘« circles §’°) the
matriz

a;r 0 0 aio

0 pu Pz O
0 P21 P22 O € My (Mn(R)).

a0 0 a2

Definition 23 A matriz o € My,.(R) is said to be circled type if there
eixsts B,y € M,.(R) such that « = 8 ©® 7.

24



(Suslin Matrices of Circled Type)

Let R be a commutative ring with 1 and let v = (ag, a1, -+ ,a,),w =
(bo, b1, ,by) € My,41(R). The Suslin matrix S, (v, w) is of circled type
if and only if a; = 0 = b;.

In this case, one observes that
Sr(v,w) = Sp_1(v1,w1) © Sy (vf, W),

where U1 = ((107(127' o 7a7“)5w1 = (bo,bg, T 7b7“)7 U1® = (0’077b2aa3a T 7a7‘)7
and w{ = (by, —ag, bz, - ,b).

(3) Action Method: Suppose we expect some relation LHS = RHS. In this
method we first show that the action of LHS on S, (v, w) and the action of
RHS on S, (v, w) are same. Using this equality, one can show via Lemma
20 that LHS-RHS™! € Z(SUm,.(R)) and then by some argument (generic
argument), one can show that both LHS and RHS are equal.

(4) Method of Reflection: This is a refinement of the previous method.
Again see the action on S, (v, w) as above. However, do show the equal-
ity compute via the homomorphism in Theorem 16, ¢ : SUm,(R) —
SOy(r41)(R) whose image is a composition of two reflections. So instead
of multiplying matrices, one plays with pairs of rows (v, w) of unit length.
Finally to check equality, use the fact that ¢ : EUm,(R) — EOg(,41)(R)
is surjective and ker ¢ C Z(SUm,(R)).

(5) Orthogonal Matrix Method: In this method, we evaluate the image of
both LHS and RHS under ¢ in the matrix form and do the computation
in EOg(,41)(R) and show that both the images are the same. Using the
surjectivity of ¢, one can come back to EUm,(R) and using some argument
as in the previous method one can say that both sides are equal.

Quillen—Suslin theory for EUm, (R[X])

The image of ¢ contains all even products of reflections, and hence, in particular,
all elementary orthogonal matrices.

Thus, all questions concerning the group EUm, (R) can be reduced to the
corresponding questions regarding elementary orthogonal matrices. For ex-
ample, one has a Quillen—Suslin theory for the elementary orthogonal groups
EO2, (R[X]) due to results of Suslin-Kopeiko in [62] - both the Local Global
Principle and the Monic Inversion Principle of Quillen—Suslin hold for the Ele-
mentary Unimodular vector group EUm, (R[X]). From the Local Global Prin-
ciple, or otherwise, one can conclude that EUm, (R[X]) is a normal subgroup of
SUm, (R[X]), for r > 1.
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SUm, (R)/EUm, (R) <+ $Ou;.41)(R)/ EOs(,.1)(R)

In this subsection, we recall the main work of Jose-Rao in [25] where they show
how the Fundamental property led to showing that the quotient of the Special
Unimodular vector group by its Elementary unimodular vector group sits inside
the orthogonal quotient; wviz. it was shown in ([26], Theorem 4.14) that the
induced map ¢ on the quotients is an injection, whence SUm,.(R)/EUm,(R) is
a subgroup of the orthogonal quotient SOy, 4 1)(R)/EOg11)(R)

This is clear from Proposition 20 which shows that ¢ maps EUm,(R) —
EOy(,11)(R) given by ¢(S(v,w)) = T, (v,») is surjective. Moreover, one has
the kernel of the map ¢ : SUm,.(R) — SOs(,+1)(R) is contained in Z(SUm,(R)).

R. Hazrat and N. Vavilov, using ideas of A. Bak in [3], have shown in [21]
that the orthogonal quotient group is nilpotent. Hence, the unimodular vector
group quotient SUm,.(R)/EUm,(R) is a nilpotent group, for r > 1.

Injective stability for the K; orthogonal functor

We used results in ([55], §4) in ([54], Corollary 2.7) to show that the injective
stability for the orthogonal K;O functor cannot fall, in general for an affine
algebra. We recapitulate that result here. Thus the Suslin matrices have been
found useful in the context of injective stability bounds of the orthogonal K;O
functors.

Before that we recall yet another lemma from [26].

Lemma 24 Let S,.(v,w), S.(v',w'), r > 1, (v,w) = (', w') = 1, be Suslin
matrices. If Sy (v,w) € S, (v',w")EUm,(R), then

(2) if r is even x2(v) R x2(v'),
(i1) if r is odd x4(v) Y xa(v').

Lemma 25 Let A be a an affine algebra of dimension d over a perfect field k,
of characteristic # 2, and with c.d.o(k) < 1. Assume that mA = A for some
m > 0. If v € Umgy1(A) then there is a row of the form (vi*,...,v441) in the
elementary orbit of v.

Theorem 26 ([54], Theorem 2)

Let A be a an affine algebra of dimension d over an algebraically clsoed field,
or a non-singular one over a perfect Ci-field. Assume 2A = A. If the natural
map

. S02+1)(4) | SOxa12)(4)
po- EO2(41)(A)  EO2(442)(A)
is an isomorphism, then every unimodular (d+ 1)-row over A can be completed

to an elementary matriz. However, Umgy1(A) = e1Eq41(A) does not hold in
general.
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Proof: Let d be odd. Let v € Umgy1(A). Choose any w with v - w! = 1.
By Lemma 19 the matrix of the linear transformation T, (,,,) is a commutator,
hence stably elementary orthogonal. The hypothesis enables us to conclude that
it is elementary orthogonal. By Lemma 24, Sy(v,w) € EUmgy(A). Moreover, by
Lemma 24, x4(v) = 1.

By Lemma 25 as 2A = A, every row v € Umgy;1(A4) is a xa(v'), for some
v € Umg41(A). The result follows.

A similar argument can be given when d is even. Using the corresponding
results of [26].

Corollary 27 There exist affine algebras A of dimension d > 2 over a perfect
C1-field k for which the injective stability estimate for K1O(A) is not less than
2(d+2).

Theorem 28 Let A be a local Ting of dimension d, with 2A = A. If the natu-
ral map SOsg(q41)(A[X])/EOz(a41)(A[X]) — K1O(A) is an isomorphism, then
every unimodular (d + 1)-row over A[X] can be completed to an elementary
matrix.

Corollary 29 There exists an affine algebras A of dimension 3, and a mazximal
ideal m of A, for which the injective stability estimate for K;O(An[X]) is not
8.

Proof: In ([55], §4), it is shown that if A = k[X,Y,Z]/(Z7 — X% — Y?),
where k = C or a sufficiently large field, then Ums(A[T, T [X], (X)) #
e1E3(A[T, T~'][X]). Note that A is regular except at the maximal ideal m =
(X,Y, Z). Hence, by Suslin’s version of the Local Global Principle in [61], and
T. Vorst’s theorem in [77], it follows that there is a maximal ideal 9t containing
m[T, T~1] such that e;E3(A[T, T~ o[ X]) # Ums(A[T, T~ }]on[X]). Now apply
Theorem 28.
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Appendix: Reflections via MuPAD

We define the reflection function 7, ,)(z,w) via MuPAD for r = 4, where
x,y, z,w are vectors of length 5 as follows: In all the commands given below,
we suppress the output by putting colon (:) at the end of each input statement.

To define the function 7(, ,)(2, w), we need to define the vectors x,y, z, w.
The vectors x, y, z, w are defined as:

e x := matrix([[x0,x1,x2,x3,x4]]):
e y := matrix([[y0,y1,y2,y3,y411):
e z := matrix([[z0,z1,z2,23,24]1]):

e w := matrix([[b0,b1,b2,b3,b4]1]):

assume (Type: :Real):

f:=(x,y,z,w) -> linalg::scalarProduct(x,y) * matrix([z,w])
-(1linalg: :scalarProduct(x,w) + linalg::scalarProduct(y,z)) * matrix([x,yl):

The above statement defines the function

f(x,y,z,w) = <$>y><z7w) - (<$,’LU> + (y,z))(:c,y).

Thus f(z,y, z, w) will give the value of 7, (2, w).
As an illustration, we give the computation we did in the proof of Proposi-
tion 20 for i = 5,j = 3. The computation uses the following vectors:

e v := matrix([[a0,al,a2,a3,a4]]):
e w := matrix([[b0,b1,b2,b3,b4]1]):
e el := matrix([[1,0,0,0,011):
e ei := matrix([[0,0,0,0,1]1):
e ej := matrix([[0,0,1,0,0]]):

In the following input statements, we use L for A. We first evaluate 7(¢, —¢, e,)©
T(f(l*)\)elJre]‘,*elJrAEj) o T(elfej,elfei) o T(*(l+)\)81+6]‘,7617}\8]‘+6i) o T(el,elfei) o
T(—e1,—e1+ej+e;) © T(er,e1—Xej) © T(er,er) at (’va)'

o AA := simplify(f(el,el,v,w))

Output:
v1 = (=bo,a1,az,a3,a4) and
wy = (—aog,by,bz,b3,by)
e AB := simplify(f(el,el-L*ej,AA[1],AA[2]))
Output:
vy = (ap+ LPas,a,as,as,a4) and
Wo = (bo + LPas, by, by — LQPCLQ — LPag — LPbgy, b3, b4)
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e AC := simplify(f(-el,-el+L*ej+ei,AB[1],AB[2]))

Output:
vg = (ag —bo,a1,az,a3,a4) and
wg = (—ag+ a4, b1,bs — LPay, bz, a9 — as + by + by + LPas)

e AD := simplify(f(el,el-ei,AC[1],AC[2]))
Output:
Vg4 = (a03a13a23a33a4) and
Wy = (bo, bl, bg — L.P(Z47 bg, b4 + LPGQ)
e AE := simplify(f(-(1+L)*el+ej,-el-L*ej+ei,AD[1],AD[2]))

Output:

Vs = (a4—b0 —|—b2—L2Pa2—L2Pa4—L2PbO — LPCLO — LPCLQ — 2PLPb0 —|—LPb2,
ai, agp + a9 —ayg + bo — bg + L.CLQ + L.a4 + L.bo,a37a4) and
ws = (—a0+a4+b2—LPa2—LPa4—LPb0,b1,

by — L?Pay — L?>Pay — L?Pby — LPay — LPby + LPb,, b3,
ag — ag +byg —ba + by +2.L.as + L.ag + Lbo)

e AF := simplify(f(el-ej,el-ei,AE[1],AE[2]))

Output:

Vg = (aO—LQPag—LQPa4—L2Pb0—LPa0+LPa2+LPa4+LPb2,a1,
ag — LPGQ —LPbo,Clg,CM) and

wg = (bg+ LPay+ LPby, by,

b2 7L2P(12 7L2Pa4 — L2Pb0 7LP(10 7LPb0 +LPb27bg,b4 7LPbo)

e AG := simplify(f(-(1-L)*el+ej,-el+Lxej,AF[1],AF([2]))

Output:
v; = (=bo+bz,a1,a0+ az+ by — ba + L.ay, a3, as) and
wy = (—a0+b2 7L.(l4,b1,b2,bg,b4 7L.b0)

e AH := simplify(f(el-ej,el,AG[1],AG[2]))

Output:
vg = (ap+ LPay,a1,az,a3,a4) and
ws - (boablabQ’bs,bzl—LPbo)
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t
Note that this value is same as oej5()\) (::}t), where
1000 X 0 0O OTPO
010 0 0O O OO0 OO
001 0 0 O 0O0O0O0
0001 0 0 0O0O0TO
oers(\) = 00 0 01 O 0 O0O00O0
00 00 0 1 0000
000 0O O 1 00O
000 00 O 01 0O0
000 00 O O0O01TO0
00 0 0 0O =X O0O0O01
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