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Introduction

The aim of this expository paper is to give a self contained account which is accessible
to students of some of the work done by Indian mathematicians in the field of projective
modules. This is one of the topics in which algebraists at the Tata Institute (T.I.F.R)
have worked on a lot. Our aim is not to give a historical account of their contributions
but to focus on the proof of some of the results which were proved following the proof
of the “Quillen - Suslin” theorem. We have chosen to focus on results whose proofs can
be easily understood by students. In order to keep the presentation totally elementary
we do not even introduce the notion of a projective module. We use only results about
projective modules given by “unimodular rows”. We believe that a student who has
read this paper will be able to understand and appreciate the many other contributions
that mathematicians have made to the subject and read the recent work done in this
area. We would like to emphasise that the self contained presentation we have made here
has been possible because the subject matter evolved with time thanks to the efforts of
many mathematicians some of whose work is not mentioned in this paper. We hope that
the reader of this paper will delve into the many things we left out by looking at the
references and MathSciNet for example. We now give a brief account of the contents of
this paper.

Let A = k[Xy,...,X,] be the polynomial ring in n variables over a field k and p C A
be a prime ideal. Then p is finitely generated as A is Noetherian. We define u(p) to be
the minimum number of elements needed to generate p. By Krull’s dimension theorem
p(p) > ht(p). One can ask if p(p) is bounded. This is however false. There are classical
examples of height 2 prime ideals p in C[Xy, X5, X3] constructed by Macaulay (cf. [2])
which require an arbitrary large number of generators. In Macaulay’s examples, the ring
C[X1, X2, X3]/p has a singularity at the origin.

However, if A = k[X;,...,X,] and p C A is a prime ideal such that A/p is regular,
then Forster (¢f. [9]) proved that p is generated by n+ 1 elements. He conjectured that p
is generated by n elements. The conjecture of Forster was settled by Sathaye (cf. [34]) in
the case where k is infinite and shortly afterwards by Mohan Kumar (¢f. [23]) in general.
One of the aims of this paper is to give a proof of their theorem namely;

Theorem 1. Let A = k[X1,..., X,] be the polynomial ring in n variables over a field k
and p C A be a prime ideal such that A/p is regular. Then p is generated by n elements.

We shall begin by considering some special cases of this theorem.

1. A=E[X] is a PID and there is nothing to prove.

2. A=k[X;,...,X;]. fm C Ais a maximal ideal, then m is generated by n
elements, cf. 3.4.1.

3. A=k[X1,Xs]. If pC Ais aprime ideal, then ht(p) = 1 or ht(p) = 2. If ht(p) =1,
p is principal (¢f. 1.10.5). If ht(p) = 2, p is maximal and hence is generated by 2 elements.



4. Let A = k[X1, X2, X3]. To prove Forster’s conjecture it is enough to prove that
if p C Ais a prime ideal of height 2 such that A/p is regular, then p is generated by
3 elements. This was proved independently by Abhyankar and Murthy in [1] and [24],
thus, settling the first non trivial case of Forster’s conjecture.

Now, suppose p C k[X1,...,X,] is such that A/p is regular. Then it follows from
a theorem of Forster-Swan (cf. [9], [41]) that p/p? is generated by n elements. Thus,
Forster’s conjecture will be true if the following question has an affirmative answer.
Question 1 : Suppose p C k[X1,...,X,] is a prime ideal such that p/p? is generated
by n elements. Is p generated by n elements 7

Sathaye and Mohan Kumar settled Forster’s conjecture by giving an affirmative an-
swer to Question 1.

More generally Mohan Kumar proved the following :

Theorem 2. Let A = k[X1,...,X,,] and I C A be an ideal such that I/I? is generated
by r elements, where r > dim(A/I) + 2. Then I is generated by r elements.

Using Theorem 2, one can settle Question 1, and hence Forster’s conjecture as follows.

If ht(p) = 1, then p is principal and there is nothing to prove. Assume ht(p) > 2.
Then dim(A4/p) < n — 2. Therefore, n > dim(A/p) + 2. Now, since p/p? is generated by
n elements, by Theorem 2, p is generated by n elements.

The following theorem of Mandal (¢f. [19]) is a generalisation of Theorem 2.
Theorem 3. Let A be a Noetherian domain, I an ideal of A[X]| containing a monic
polynomial. Suppose that I/I? is generated by n elements, where n > dim (A[X]/I) + 2.
Then I is generated by n elements.

In this paper we give a proof of Theorem 3 (¢f. 3.3.2) which easily implies Forster’s
conjecture (c¢f. 3.3.3).

We also apply Theorem 3, to prove the following addition principle (cf. 3.4.7).
Theorem 4. Let A be a Noetherian domain with dim(A) = d. Let n > 43, Let J;
and Jo be two ideals of A of height n such that J; + Jo = A. Assume that J; and Jy are
both generated by n elements. Then J; N Js is generated by n elements.

The layout of this paper is as follows. In the first section we prove some basic results
in commutative algebra. These results can be found in [21] and are included only to
make the paper self contained and accesible to students. In Section 2, we prove variants
of theorems of Quillen and Suslin which are used in the proof of Theorem 3. In Section 3,
we prove Theorem 3 of S. Mandal (¢f. 3.3.2) and use it to deduce Theorem 1 (Forster’s
Conjecture). In Section 4, we give another proof of Theorem 1. We end the section with
a variant (due to Mandal) of Theorem 3.

1 Basic Commutative Algebra

In this section we review certain basic concepts which we need later. We give three
methods of building new rings from old ones.

Throughout this paper by a ring we mean a commutative ring with an identity ele-
ment.

1.1 The construction of new Rings from old ones

Polynomial Rings: Let A be a ring. The ring A[X}, ..., X,] denotes the polynomial



ring in n variables X1, Xo,..., X,, over A and consists of elements of the form,

n

F=Y "N, Xt X Ny, €A, (i, in) €T
i=1

An expression Xfl ... X! is called a monomial and i; + --- + i, is called its degree.
A typical element of this ring, called a polynomial, is a finite A-linear combination of
monomials. A polynomial which is a finite A-linear combination of monomials each of
degree d is called a homogeneous polynomial of degree d. Clearly, any polynomial
is a finite sum of homogeneous polynomials. The degree of a polynomial is defined
to be the maximum of the degrees of its homogeneous components.

Factor Rings: (residue class rings) If I is an ideal in a ring A, then the collection
of cosets {x + I'|x € A} form a ring under the induced operation from A. This ring is
called the factor ring or the residue class ring of A modulo I and is denoted by A/I.
The natural homomorphism ¢ : A — A/I, given by x — x + I, shows that there is a
one-to-one correspondence between ideals of A/I and the ideals of A which contain I,
given by K — ¢(K) and J — ¢~ 1(J).

Definition 1.1.1 A proper ideal p of a ring A is said to be a prime ideal if ab € p
implies that either a € p or b € p.

Definition 1.1.2 An ideal m of A is said to be maximal if m is not properly contained
in any other ideal of A.

Remark 1.1.3 An ideal p is prime if and only if A/p is an integral domain. An ideal m
of A maximal if and only if A/m is a field. In particular maximal ideals are prime. If p
is a prime ideal of a ring A and I,J C A are ideals such that IJ C p, then either I C p
or J Cp. For,if I ¢ p and J ¢ p, then there exists a € I, a ¢ p and b € J, b ¢ p, but
ab € p. This is a contradiction.

Definition 1.1.4 Let p be a prime ideal of a ring A which contains an ideal I. Then
p is said to be minimal over I if I C p’ C p for any prime ideal p’ of A implies that
p =p’. We call a prime ideal p of A minimal if p is minimal over the zero ideal.

Definition 1.1.5 The set of all prime ideals of a ring A is called the Spectrum of A
and is denoted by Spec(A). Let I be an ideal of A and V(I) = {p € Spec(4)|I C p}.
It can be shown that the collection {V(I)|I C A} are closed subsets of Spec(A) with
respect to a certain topology on Spec(A) called the Zariski Topology.

Notation. 1.1.6 The set of all maximal ideals of a ring A is a subset of Spec(A). It is
denoted by Max(A).

Definition 1.1.7 A ring A is said to be a local ring if A has a unique maximal ideal.
A ring A is said to be semilocal if A has only finitely many maximal ideals.

Definition 1.1.8 Let A be a ring. By a chain of prime ideals of A we mean a finite
strictly increasing sequence of prime ideals pg C p1 C -+ € p, of A. The integer n is
called the length of the chain. The Krull dimension of A is the supremum of the
lengths of chains of prime ideals of A. It is denoted by dim(A).

In this paper, by dim(A) we mean the Krull dimension of A.



Definition 1.1.9 Let A be a ring. If p € Spec(A), then the height of p, denoted by
ht(p), is defined to be the supremum of the lengths of chains of prime ideals pg C p1 C
-++ C p, = p which end at p. For any ideal I C A, we define ht(I) = Inf ht(p), where
infimum is taken over all prime ideals of A which are minimal over I. Note that ht(p)

could be infinite.

Definition 1.1.10 Let A be a ring. A a subset S of A is said to be multiplicative
closed if1€5,0¢ S and a,b € S implies that ab € S.

Example 1.1.11 Let A be a ring and a € A be such that a™ # 0 for every natural
number n. Then S = {1,a,d?,...} is a multiplicative closed set.

Now we give a third method of constructing new rings from old ones viz.

Localization: This is a construction analogous to the construction of the field of ratio-
nals Q from the ring of integers Z. For any ring A and a multiplicative closed subset S
of A we define the ring of fractions S~'A, consisting of elements of the form 2, where

a € A and s € S, with addition and multiplication defined as follows:
(a/s) + (b/t) = (at + bs)/st; (a/s)(b/t) = ab/st.

The notion of equality in S~! A is understood in the following way: T = % < r(at—bs) =0
for some r € S.
Some facts on localisation:

1. There is a ring homomorphism f : A — S~!A defined by f(z) = /1. In general
f is not injective. Clearly, f is injective < S does not contain any zero divisors.

2. Let g : A — B be a ring homomorphism such that g(s) is unit in B for all s € S.
Then there exists a ring homomorphism h : S™'A — B such that g = h o f, where h is
defined as, h(a/s) = g(a)g(s)~! and f is as in (1).

3. If I C Ais an ideal, then S™'I = {%]i € I,s € S} is an ideal of S7'A. Any ideal
of S71A is of the form S~'I, where I C A is an ideal.

4. The prime ideals of S~!A are in bijective correspondence with the prime ideals of
A which does not meet S. This correspondence is given by sending p € Spec(A), which
satisfies the property that p NS = ®, to S~!p and sending an ideal q € Spec(S~1A) to
the prime ideal f=1(q) of A (where f is as in (1)).

The surjectivity of this correspondence is easy to prove. We prove the injectivity by
contradiction. Let p1,pa € Spec(A4) be such that p1 # p2, p1 NS =p2NS = &. We show
that S~1p; # S~1ps. Without loss of generality we may assume that p; & po. Then we
show that if a € p; —p2, a/s ¢ S~ 'ps. Assume to the contrary let S = % for some b € po
and t € S. This means there exists r € S such that r(at —bs) = 0. This implies rat € ps.
Since rt ¢ pa, a € po, a contradiction. Conversely, if S~'p; # S~ 1ps, then obviously
p1 # po. In particular, if p; C po and py NS C po NS = @, then S~'p; € S~ py. Thus,
the above correspondence is inclusion preserving.

Let A = Z, S = {1,3,32, .. .}, L = 2Z, I, = 67 I3 = 18Z. Then Sil_[l = 571[2 =
S~'I3 even though I; NS = I, NS =I3NS = ®. Note however that I, and I3 are not
prime ideals.

5. If I, J are ideals of A, then S™Y(I 4+ J) = S~ I+ S~1J, S~1(1J) = S~11.871J,
S~IINJ)=S"'INS™1J,and S~'I = S~ !'Aif and only if INS # ®.

6. If A is a domain and S = A — {0}, then S~!A4 is the quotient field of A. For any
prime ideal p of A and S = A —p, S~ A is denoted by A, and is called the localization
of A at the prime ideal p. The ring 4, is a local ring with maximal ideal S~'p.



Remark 1.1.12 From the above discussion it is clear that for a prime ideal p of a ring
A, ht(p) = dim(A4,).

Definition 1.1.13 An element a of a ring A is said to be nilpotent if ™ = 0 for some
n > 0.

Notation. 1.1.14 We write A, for S™'A, and I, for S7I, where S = {a"|n > 0},
where a is not nilpotent.

Localization of Modules: Let A be aring, M an A-module and S C A a multiplicative
closed subset. Then we can define an S~!A-module denoted by S~'M. First, we define
a relation = on M x S as follows:

(m,s) = (m',s") & t(sm’ —s'm) =0 for some t € S.

It can easily be shown that = is an equivalence relation. The equivalence class of (m, s)
is denoted by m /s and the set of equivalence classes is denoted by S™1M. Now we define
addition of two elements m/s,m//s" € ST'M by m/s+m//s' = (s'm + sm’)/ss’ and
multiplication of a scalar a/s € S~*A and m’/s’ € S™'M by (a/s)(m'/s") = (am’)/(ss").
It is easy to check that under these operations S~'M is an S~!A-module. Now if p is a
prime ideal and S = A —p, then the Ay,-module S~™'M is denoted by M, and it is called
the localization of M at p.

Let M, N be two A-modules and f € Hom (M, N). Define S~1f : S7!M — S7IN
by (S71f)(m/s) = f(m)/s. It can be easily seen that S™!f is well-defined and that it
belongs to Homg-14(S~1M, S~IN).

Definition 1.1.15 Let A be a ring. A sequence

0 ML S g 0

is of A-modules is said to be exact if Ker(g) = Im(f), f is injective and g is surjective.
Proposition 1.1.16 Let A be a ring and

0 ML Ly 0

an ezxact sequence of A-modules. Then

—1 -1
0_>571M/u>571MM571M”_>0

is an exact sequence of S™'A-modules.
Proposition 1.1.17 Let A be a ring and M, N be two A-modules. Then
ST MaN)=2S'Me SN,

In particular, if M = A" = A®A®---® A (n times), then S™*M = (S~LA)™.



1.2 Prime Avoidance Lemma

Lemma 1.2.1 (Prime Avoidance Lemma) Let A be a ring and I C A an ideal.
Suppose I C U p;, where p; € Spec(A). Then I C p; for some i, 1 <i<n.

Proof. To prove the lemma it suffices to show the following implication:
I¢p;Vi,1<i<n=IZUp,.

We shall show this by induction on n. Clearly, this is true for n = 1. By induction, for
each 7, there exists z; € I such that z; ¢ p; for i # j. If z; ¢ p;, then we are through.
If z; € p;, then consider the element y = > 1" | &1...2;_18;Ti41 ... 2T,. Clearly, y & p;,
1 <¢<nandy el This proves the lemma. O

Lemma 1.2.2 Let A be a ring, p1,...,pr € Spec(A) and I = <a1, . .,an> be an ideal of
A such that I ,Q_ pi, 1 < i <r. Then there exist by, ..., b, € A such that the element

c=ai+agby + -+ apby, ¢ U_ p;.

Proof. Without any loss of generality we may assume that p;  p; for i # j. We prove
the lemma by induction on r. Suppose by induction we have chosen ca, ..., ¢, € A such
that dy = a1 + coa2 + -+ + cpan ¢ U?;llpi. If dy ¢ p,, then we are through by taking
b; = ¢;, 2 < i <r. So we assume that d; € p,..

If as,...,ay, all belong to p,, then dy — Z?:Q a;c; = a1 € p,r. But, this will imply
that I C p,. Thus, at least one of the a; ¢ p,, 2 < ¢ < n. Without loss of generality we
assume that as ¢ p,. Since p; € p; for i # j, we can choose z € N]_; 'n; such that = & p.
Then ¢ = dy + xas = a1 + azba + -+ - + anby, ¢ Ul_;p;. This proves the lemma. O

1.3 Nakayama Lemma

Definition 1.3.1 The intersection of all the maximal ideals of a ring A is called the
Jacobson radical of A. We denote it by Jac(A).

Remark 1.3.2 Let z € Jac(A). Then for every a € A, 1 — ax is a unit of A.

Lemma 1.3.3 (First version of Nakayama Lemma) Let A be a ring, M a finitely
generated A-module and I be an ideal of A such that IM = M. Then there exists an
element a € I such that (1 —a)M = 0.

Proof. Suppose M # 0 and my,...,m, is a generating set of M. Since IM = M,
m; = Z 1 Aijmj, where \;; € 1. ThlS implies that

1—2A1 =X o =gy my
—)\21 1- )\22 e =gy mz | _
_)\71 _AT‘Q et 1-— )\7’7“ my
Let
1-X1 A2 - =Agp
a= | T MM T
_Arl _)\72 Tt 1- Arr

Multiplying the above equation by adj(«) we get det(a)M = 0. Since a = I,, modulo I,
det(a) = 1 modulo I. So, there exists a € I such that (1 — a)M = 0. This proves the
lemma. O



Lemma 1.3.4 (Second version of Nakayama Lemma) Let A be a ring, M a finitely
generated A-module and I C A an ideal of A contained in Jacobson radical of A. Then
IM = M implies M = 0.

Proof. By Lemma 1.3.3, there exists an element a € I such that (1 —a)M = 0. Since
is contained in Jacobson radical of A, (1 — a) is a unit of A, so that M = 0. Hence the
lemma. O

Corollary 1.3.5 Let A be a ring, M a finitely generated A module, N an A-submodule
of M. Let I be an ideal of A contained in Jacobson radical of A. If M = N + IM then
M = N.

Proof. The proof follows by applying 1.3.5 to the module M/N. O

1.4 Noetherian Rings and Modules

In this section we prove some basic results on Noetherian rings and modules.
Let A be aring and M be an A-module. Then the following statements are equivalent:
1. Any non empty collection of submodules of M has a maximal element.
2. Any ascending chain of submodules of M is stationary.
3. Every submodule of M is finitely generated.

Definition 1.4.1 Let A be aring. An A-module M is called Noetherian if it satisfies
one of the above equivalent conditions.

Definition 1.4.2 A ring A is said to be Noetherian if A is Noetherian as an A-module.

Proposition 1.4.3 Let A be ring, M an A-module, and N an A-submodule of M. Then
M is Noetherian if and only if N and M /N are Noetherian.

Proof. It is clear that if M is Noetherian then N and M/N are Noetherian. So, we
prove the converse.

Assume N and M/N are Noetherian. Let K be any submodule of M. We show
that K is finitely generated. Since (N + K)/N is a submodule of M/N, it is finitely
generated. Let bar denote the reduction modulo N. Let {ki,...,k,} be a generating
set of (N + K)/N, where k; € K, 1 <i<n. Let Ny = KN N. Since N is Noetherian,
N; is finitely generated. Let q¢i,...,q, generate N;. Now, for z € K, T = E?’Zl ki
for some )\; € A. Therefore, the element x — Z?:l Aik; belongs to K N N and hence
x — 3y Niki = >0 ) piqs, pe € Ao This implies that K = (ki) kn @y qr)s
proving the corollary. O

Corollary 1.4.4 Let A be a ring and M;, 1 < i <n be A-modules. Then the A-module
@71 M; is Noetherian < each M; is a Noetherian A-module.

Corollary 1.4.5 Any homomorphic image of a Noetherian ring is Noetherian.

Corollary 1.4.6 Let A be a Noetherian ring and M be a finitely generated A-module.
Then M 1is Noetherian.

Theorem 1.4.7 Let A be a Noetherian ring. Then A[X] is Noetherian.



Proof. (See[33]) Let I C A[X] be an ideal. We want to show that I is finitely generated.
Let us choose f1(X) € I of smallest degree. If I = (f1(X)), we are through. If not,
we choose f>(X) € I such that fo(X) ¢ (f1(X)) and is of smallest degree amongst all
polynomials in I which are not in (f1(X)). If I = (f1(X), f2(X)), then we are through
as before. If not, we choose f3(X) € I such that f3(X) has the smallest degree amongst
all polynomials of I which are not in < f1(X), fa(X )> Proceeding in this way we can
choose f;(X) for ¢ > 0.

Let a; be the leading coefficient of the polynomial f;(X). Since A is Noetherian, the
increasing chain of ideals

(a1) C {a1,a2) C---{a1,...,a,) C---

terminates. Suppose <a1, cey an> = <a1, ceey Qp, an+1> = ... for some n > 0. We claim,
1= <f1, cee, fn> Assume to the contrary that f,,+1(X) = a,+1X™+lower degree terms
is not in the ideal generated by f1,..., fn. Let ant1 = > Aiai. Let us define g(X) =
Far1(X) = 350 N fi(X) X deelns1)—des(fi) - Thus, g(X) is a polynomial of degree less
than that of f,11(X) and is not in the ideal generated by f1,..., fn. This contradicts
the choice of f,,+1(X). Hence the claim. This proves the theorem. O

Definition 1.4.8 Let A be a ring and I be an ideal of A. The set of all elements
{z € Alz™ € I for some n > 0} is an ideal and is called the radical of I and is denoted
by V/I. The ideal /0 is called the nil radical of A and is denoted by nil(A).

Remark 1.4.9 Let A be a Noetherian ring and I C A be an ideal. Then, since v/I is
finitely generated, there exists an integer n > 0 such that (\/_7 .

Lemma 1.4.10 Let A be a ring, S a multiplicative closed subset of A. If I is an ideal
of A mazimal with respect to the property that I NS = ®, then I is a prime ideal.

Before we prove the lemma we make the following remark.

Remark 1.4.11 The ideal <0> satisfies the property that <0> N .S = ®. Therefore, by
Zorn’s lemma an ideal I with the above property exists.

Proof of Lemma 1.4.10. Suppose [ is not prime. Then there exists a,b € A such that
a,b ¢ I but ab € I. By assumption, <I,a> NS # @ and <I,b> NS # ®. Let us choose
r=A+at € <I,a>ﬁS, where A € I, t € Aand y = pu+br € <I,b>ﬁS, where p € I,
r € A. Since ab € I, the element xy = (A + at)(p + br) = Ap+ Aor + pat +abrt € INS.
This is a contradiction. This proves the lemma. O

Lemma 1.4.12 Let A be a ring and I C A be an ideal. Then /I = Np, where intersec-
tion is taken over all prime ideals of A containing I.

Proof. We prove this when I = 0, the general case being similar. Let a € /0. Then
a™ = 0 for some n > 0. Hence a™ € p for all p € Spec(A), so that a € p for all
p € Spec(A).

Conversely, let a € Np for all p € Spec A. Suppose a is not nilpotent. Let S =
{1,a,a?, ...}. Then S is a multiplicative closed subset of A and hence by Lemma 1.4.10,
there exists a prime ideal q of A such that qN S = ®&. But a € qN S showing that
qN S # @, a contradiction. Hence the lemma follows. O

Proposition 1.4.13 Let A be Noetherian ring, I C A an ideal. Then V1 is a finite
intersection of prime ideals of A.



Proof. Suppose the proposition is false. Let S be the family of ideals I of A such that
VT is not a finite intersection of prime ideals.

Since A is Noetherian, S has a maximal element, say Iy. If Iy is a prime ideal, then
Iy = /Iy and hence the proposition follows. So we assume that Iy is not prime. So,
there exist a,b € A such that a,b ¢ Iy but ab € Iy. Since Iy C <I0,a> and Iy C <I0,b>,

= =

\/<I0, a> and \/<Io, b> are finite intersections of prime ideals.

We claim, /Iy = \/<Io, a> N \/<Io, b>. It would then follow that /Ty is also a finite
intersection of prime ideals. This contradicts the assumption on Ij.

Proof of the claim : Clearly, v/Iy C \/<Io,a> N \/<I0,b>. To prove the other part

let x € Ip,a) N Ip,b). Then z™ € (Iy,a), ™ € (Iy,b) for some m,n > 0. Since
V(Jo.a) 0/ (10.b) (Io.a). 2™ € (In.b)

ab € Iy, 2™*™ € Iy. This implies that x € /Ip. Hence the claim. This completes the
proof. O

Proposition 1.4.14 Let A be a Noetherian ring, I C A an ideal of A. If VI = N1 pi
and n is the least integer with respect to this property, then the p;’s are exactly those
prime ideals of A which are minimal over I.

Proof. Let n be the least integer with respect to the property that /I = NPy p;. If
for some i, p; is not minimal over I, then there exists a prime ideal q of A such that
I C q C p;. Taking radicals it follows that N}'_;p; C q C p;. Hence p, C q C p; for some
r. This contradicts the minimality of n. Hence the p;’s are minimal over I.

Conversely, let p € Spec(A) be minimal over I. Then I C p and taking radicals it
follows that I C p; C p for some j, 1 < j < n. Since p is minimal over I, p = p;. This
proves the proposition. O

Corollary 1.4.15 For any ideal I of a Noetherian ring A there are only finitely many
prime ideals of A minimal over I.
1.5 Artinian Rings and Modules

In this section we prove basic results about Artinian rings and modules.

Definition 1.5.1 Let A be a ring. An A-module M is said to be Artinian if one of the
following equivalent conditions holds.

1. Any non empty collection of submodules of M has a minimal element.
2. Any descending chain of submodules of M is stationary.

Definition 1.5.2 A ring A is said to Artinian if it is Artinian as an A-module.

Some properties of Artinian Modules:

1. If M is an A-module and N is a submodule of M, then M is Artinian if and only
if N and M/N are Artinian.

2. For A-modules M, ..., M,, &M, is Artinian if and only if each M, is Artinian.

3. If A is a Artinian ring, then any finitely generated A-module is Artinian.

Proposition 1.5.3 An Artinian domain is a field.

Proof. Let A be an Artinian domain and z € A be a non zero element. Since A is
Artinian, the decreasing chain of ideals <x> D <x2> D ---, terminates i.e. there exists



an integer n > 0 such that (z™) = (z"*').... Therefore, 2™ € (z"™') and hence there
exists y € A such that 2" = 2"*!y. Since A is a domain, and  # 0, it follows that
xy = 1, showing that x is a unit of A. Hence the proposition follows. O

Corollary 1.5.4 In an Artinian ring every prime ideal is mazimal.

Proof. Let A be an Artinian ring, p a prime ideal of A. Then A/p is an Artinian domain
and hence is a field. Therefore, p is a maximal ideal of A. O

Proposition 1.5.5 An Artinian ring is semilocal.

Proof. Let A be an Artinian ring. Suppose to the contrary {m; };cn, is an infinite set of
distinct maximal ideals of A. Since A is a Artinian ring the decreasing chain of ideals

mOomnNmg D ---

will stop, so that there exists a n > 0 such that N?_;m; = O"Jrllml This implies that
N?_ym; C my41. Hence my C myy; for some £ < n. But m;’s are maximal, so that
my = my4+1. This contradicts our assumption that the m;’s are distinct. Therefore, A
has only finitely many maximal ideals. This completes the proof. ]

Proposition 1.5.6 In an Artinian ring the nil radical is nilpotent.

Proof. Let A be a Artinian ring and 9 be the nil radical of A. Consider the decreasing
chain M D M2 O ---. Since A is Artinian, there exists an integer k& > 0 such that
NP =Nk = ... = a (say). If a = {0}, we are done. Assume that a # {0}. Let

S = {b|b is an ideal of A, ba # 0}

Note that aa = 9M*NF = N?¢ £ 0. Hence a € S, so that S is non empty and since
A is Artinian, S has a minimal element, say I. Thus, there exists x € I such that
za # {0}. Now <x> C I and therefore, by the minimality of I it follows that (z) = I.
But (za)a = za? = za # 0. Since za C I = (), by the minimality of I it follows that
za = (z), so that © = xy for some y € a. Therefore, z = zy = zy? = zy"

Now, y € a implies that y is nilpotent. Therefore, y™ = 0 for some n. ThlS 1mphes T = 0
(Alternatively, (1 — y)x = 0. But, 1 — y is unit and hence z = 0). Now, since z = 0,
I ={0}. This is a contradiction. Hence the proposition follows. O

Proposition 1.5.7 For a vector space V' over a field k the following are equivalent.
1. Vs a finite dimensional vector space over k.
2. V is a Noetherian k-module.
8. Vis an Artinian k-module.

Proof. (1) = (2): Since V is a finite dimensional vector space over k, every subspace of
V' is finite dimensional. This implies that V' is a Noetherian k-module.

(2) = (1): We assume to the contrary that V is Noetherian k-module but not fi-
nite dimensional. Then we can find an infinite set of linearly independent vectors
{e1,€2,...,€en,...} of V. This gives a strictly increasing chain of subspaces of V wiz.
kei C keq +key C key +kes + kes C ---. This contradicts the fact that V is Noetherian.
Hence V is finite dimensional.

(1) = (3): Suppose (1) is true but V is not Artinian. Let W = Wy D Wy D Wy D

be a strictly decreasing chain of subspaces of V. Then dim(Wp) > dim(W;) > ---. But,
since V is finite dimensional, the chain stops, showing that V is Artinian.
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(3) = (1): If V is not finite dimensional, as before we can choose a linearly independent
set of vectors {e1,ea,...,€en,...} of V. Then E;ﬁl ke; D 222 ke; D -+ is a strictly de-
creasing chain of subspaces of V', contradicting the fact that V' is an Artinian k-module.
Hence V is finite dimensional. a

Lemma 1.5.8 Let M =My 2D M, 2 --- 2 M, = <0> be a filtration of A-modules. Then
M is a Noetherian (Artinian) A-module if and only if each M;/M;11 is a Noetherian
(Artinian) A-module for 0 < i <n — 1.

Lemma 1.5.9 Let A be a ring and my,ma,...,m, be maximal ideals of A (which are
not necessarily distinct). Let M be an A-module. Suppose mimg---m, M = <O> Then
M is a Noetherian A-module if and only if M is an Artinian A-module.

Proof. Let M be a Noetherian A-module. We consider the filtration M = My 2 M; 2D
-2 M, = <O>, where M; = mymgy---m; M. Since M is Noetherian A-module M; /M,
is a Noetherian A-module for every i. Hence M;/M;.; is a Noetherian A/m;-module for
every i. Using 1.5.7, it follows that M;/M;;1 is an Artinian A/m;-module for every i.
Hence M;/M;4 is an Artinian A-module for all i. Therefore, M is an Artinian A-module.
The other assertion can proved similarly. O

Corollary 1.5.10 A ring A is Artinian if and only if it is Noetherian and dim(A) = 0.

Proof. Suppose A is Artinian. By 1.5.4, every prime ideal of A is maximal. By 1.5.5,

A has only finitely many maximal ideals. Let my,...,my be the finitely many prime
(maximal) ideals of A. Then by 1.5.6, there exists n > 0 such that (N*_;m;)" =0 =
<0>. Now, by 1.5.9, A is Noetherian. The converse can be proved similarly. O

Definition 1.5.11 Let A be a ring. An A-module M is said to be simple if M # 0 and
the only submodules of M are <0> and M.

Remark 1.5.12 A simple A-module is both Artinian and Noetherian.

Remark 1.5.13 Let A be a ring and M be a simple A-module. Let m be a non zero
element of M. We consider the A-linear map g : A — M which sends 1 to m. Since
Im(g) # 0 and M is simple, g is surjective. Since A/ker(g) = M is simple, ker(g) is
a maximal ideal of A. Thus, a simple A-module is isomorphic to A/m, where m is a
maximal ideal of A.

Definition 1.5.14 Let A be a ring and M be an A-module. Then M is said to be of
finite length if there exists a filtration M = Mo 2 My 2 Mz 2 -+ 2 M, = (0), where
M;/M;4+1 is a simple A-module for each i. In this case n is called the length of the
filtration. Such a filtration is called a Jordan Hdélder series or composition series of
length n. An A-module M is said to be of finite length if it has a Jordan Holder series.

Theorem 1.5.15 Let A be a ring and M be an A-module. Suppose M has a composition
series of length n. Then every composition series of M has length n.

Proof. Let [4(M) = least length of a Jordan Holder series of M.(Convention: {4 (M) =
oo < M has no Jordan Hoélder series.) We split the proof into two parts.

Step 1. We claim that if N is a A-submodule of M then [4(N) < l4(M). Let M =
My 2 My 2 --- 2 M, = 0 be a composition series of M of minimum length. Let

o ) . Ni—1 M;_1 M1 . o . Ni—1 _ M
N; = NN M;. Since v C Ir and 37 s a simple module, either N = 1 Or

11



N,;_1 = N;. Thus, removing repeated terms we obtain a composition series of N and we
get la(N) <la(M). Now, if N C M, we show that the above inequality is actually strict.
For, if [4(N) = l4(M), then N&:I = %\21 foralli =1,2,...,n. Since M,, = <0> = N,,
M, _1 = N,_1 and hence M,,_s = N,,_o and so on. Thus M = N, this is a contradiction.
this proves the claim.

Step 2. Let M =My 2 M1 2 -2 M, = <O> be a chain of submodules of M of length
r. Then from Step 1, it follows that l4(M) > [4o(M;) > -+ > l4(M,) = 0. This implies
that {4 (M) > r.

Step 3. It follows from Step 2, that for any composition series of M of length r,
r < la(M). Therefore, by the definition of [4(M), l4(M) = r. Hence all composition
series of M have the same length. O

Proposition 1.5.16 An A-module M has a Jordan Hélder series if and only if M is
both Noetherian and Artinian as an A-module.

Proof. Let M = My 2 My 2 My 2 --- 2 M, = (0) be a Jordan Hélder series of
M. Since M;/M;+1 is simple A module it follows from 1.5.12 that M; /M, is both an
Artinian and Noetherian A-module for i =1,...,n. So by 1.5.8, M is both Artinian and
Noetherian.

Conversely, suppose M is both Artinian and Noetherian. Since A is Noetherian, M
contains a maximal proper submodule, say M;. But, since M is also Noetherian it has
a maximal proper submodule, say M. Iterating this process we get a descending chain
M = My 2 My 2 My 2 Ms--- with M;/M,11 simple. Since M is an Artinian A-module
this chain stops. Therefore, M, = <O> for some n > 0. Hence M has a Jordan Holder
series. O

Proposition 1.5.17 Let A be a ring, M an A-module and N C M a submodule. Then
M has finite length if and only if N and M /N have finite length and in this case la(M) =
La(N) +1a(M/N).

Proof. The first part of the proof follows from 1.5.16. The second part also follows
easily. O

1.6 Krull’s Principal Ideal Theorem and its Generalisation
In this section we prove Krull’s Principal Ideal theorem.

Theorem 1.6.1 (Krull’s Principal Ideal Theorem). Let A be a Noetherian ring,
p a prime ideal of A such that p is minimal over the ideal <a> for some a € A. Then
ht(p) < 1.

This theorem is an easy consequence of the next theorem.

Note 1.6.2 This theorem fails due to the deficiency of Noetherian property of the ring.
For, consider the ring A = Z[2X,2X?2 2X3 ...]. Then A is a two dimentional ring
as A[1/2] = A[1/2, X] which is not Noetherian. The maximal ideal (2,2X,2X2,...)
is minimal over the principal ideal <2> and hence is of height 2. But it is not finitely
generated.

Theorem 1.6.3 Let (A, m) be a Noetherian local domain. Suppose m is minimal over
the ideal (a), where a # 0. Then ht(m) =1, i.e. Spec(A) = {(0), m}.

12



Motivation. If one knows that Spec(A) = {(0), m}, it would follow that for any non
zero element b € m, m is the only prime ideal minimal over bA. It would hence follow
that vbA = m. This implies that m™ C bA for some natural number n > 0 and hence
for any non zero element a € m, a™ € bA. This motivates the following assertion. Let
(A,m) be a Noetherian local domain such that m minimal over <a>, where a # 0. Let
b € m be a non zero element. Then for sufficiently large n, <a”, b>A = <a"+1, b>A = bA.
We prove this assertion in 1.6.8 & 1.6.9 and deduce 1.6.3 as a consequence.

Lemma 1.6.4 Let A be a ring and 0 — M’ — M — M"” — 0 be an exact sequence

of A-modules. Suppose I C A is an ideal. Then the following sequence of A-modules is
exact:

M’ M M

_ s s

IMNM M M

Proof. By hypothesis, M/M' = M". Therefore, using the fact IM" = I(M/M') =
(IM+ M")/M’, we get

0 — 0

M/IM MM M M/M M

M'JIMAM ~— M +IM/IM ~— M'+1IM ~— (M’ +IM)/M' ~ IM"

Hence the lemma follows. O

Note 1.6.5 Let A be a ring and M be a torsion free A-module. Let ¢ € A, ¢ # 0 and
N be a A-submodule of M. Then M/N ~ cM/cN. The map sending m to ¢m, is an
isomorphism. Indeed, if cm € ¢N, then em = cn, where n € N = ¢(m —n) =0 =
m—mn = 0, as M is a torsion free A-module. This implies that m = n € N = A, is
injective.

We state the following well known lemma, cf. [32].

Lemma 1.6.6 (Artin-Rees Lemma) Let I,J be two ideals of a Noetherian ring A.
Then there exists a natural number m such that for allm > m, (I"t1 N J) = I(I"NJ).

It is obvious that I(I" NJ) C I"T1 N J. The other inclusion is non trivial. We prove
the following special case.

Lemma 1.6.7 Let A be a Noetherian ring and a,b € A. Then there exists a natural
number m such that for allm > m, a" "' ANbA = a(a®ANDA).

Proof. Let J; = {u € A|pa® € bA}. Then J; C Jo C -+ is an increasing chain of ideals
of A. Since A is Noetherian, there exists an integer m > 0 such that J,, = J41 = - -.
Let n > m and ¢ € a"t'ANbA. Then ¢ = pa™*! € bA. This implies that p € J, 11 =
p € J, = pa™ € bA. Therefore, ¢ = pa™*tt = a(ua™) € a(a®ANbA). Hence the lemma
follows. O

Theorem 1.6.8 Let (A,m) be a Noetherian local domain, m be minimal over the ideal
<a>, for some non zero element a € A. Let b € m be a non zero element. Then forn > 1,
the A-module A/<a"7 b>A has finite length and for sufficiently large n

L (A" B)A) = L (A/(a"1,5)4) )

Proof. We first prove that [4(A/a"A) < oo for n > 1.
Since A is Noetherian, A/<a”> is Noetherian. If p is a prime ideal of A containing a”,
then a € p C m. Since m is minimal over (a), p = m. Thus Spec((A/a"A)) = {m}. This

13



implies that every prime ideal of A/a™A is maximal. Hence A/a™A is both Artinian and
Noetherian (see 1.5.10). Therefore, [4(A/a"A) < oo.
Now we proceed to prove (1). Applying Lemma 1.6.4 to the exact sequence of A-
modules
0 —bA—A— A/VA— 0

we get exact sequences

bA A A

T WAnad @A (anbA

and
bA A A
— — —
bANartlA a™tlA <a"+1, b>A

Since I4 (A/a™A) is finite for all n > 1, we have

() —n (A Y A
A\aa) = \aanea) T4\ npa

LAY, bA z A
A\aa) = \evianea) T\ Gavt ya )

Therefore, we have

() - (i) - ) (0

bA bA
—ta (an+1Am bA) tia (a"Am bA) @

In order to prove that the difference is zero for sufficiently large n, we consider the exact
sequence

0

— 0.

and

a™A A A

0— A g tiAd T gnA 0
which shows that
A A a"A A
Also, we have the following exact sequence
abA bA bA

0

— . 4
T Mna A bAne A ad 0 @
Using Lemma 1.6.7, we choose natural number m such that for all n > m,

a" TP ANbA = a(a™ANDA). (5)

Therefore, for all n > m we have,
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= La (&) — [l (o) — s (spem) | by (2),(3) and 165

:lA(ﬁ) L4 (5 rmw+1A) la (Mr?fiﬁm)] by (5)

=1a(5%) —la (Giz) by (4)

=la () —la(Z) by 165

=0

This proves the theorem. O

Corollary 1.6.9 Let (A,m) be a Noetherian local domain such that m is minimal over
the ideal <a>, for some non zero a € A. Ifb € m, # 0 then for sufficiently large n,

(a",b)A = (a™t1,b)A = bA.

(a"p)A

Proof. The sequence 0 — —
(an+1b)A

<an+1}b>A — <anAb>A — 0 is exact and

hence by 1.6.8, [ 4 (%) = 0 for sufficiently large n. That is, for sufficiently large
n, we get <a",b>A = <a"+1,b>A. Therefore, we can write a” = pa™t! + \b. Hence
(1 — pa) = Ab. Since a € m, 1 — pa is unit. This implies that o™ € bA. Hence
" b> = bA.

(Alternatively, in the local ring A/bA, <a_”> = <W> By Nakayama, it follows that
(a™) = 0. This implies that a™ € bA.) O

Proof of Theorem 1.6.3. Since m is minimal over <a>, VaA = m. Let p € Spec(A),
p # 0. We show that p = m. Let b € p be non zero and n be a positive integer such that
a" € bA. Since m* C aA for some k > 0, we get m*" C a” A C bA C p. This implies that
m C p C m. Hence p =m. O

Proof of Theorem 1.6.1. If a = 0, then p is minimal prime ideal of A and hence
ht(p) = 0. Assume a # 0. Suppose to the contrary that ht(p) > 2. Let p = po 2 p1 2 p2
be a chain of prime ideals of A. Going modulo ps we may assume A is a domain.
Localising at p we may assume that A is a local domain. Applying 1.6.3, we get a
contradiction. This proves the lemma. O

(o

Theorem 1.6.10 (Krull’s dimension Theorem). Let A be a Noetherian ring. Sup-
pose p € Spec(A) be such that p is minimal over <a1, - ,an>, Then ht(p) <n

Proof. We prove the theorem by induction on n. The case n = 1 follows from 1.6.1. We
assume the result is true for all positive integers k < n. Assume to the contrary suppose
that ht(p) > nand p = po 2 p1 2 -+ 2 Pny1 is a chain of prime ideals of A such that
there is no prime ideal between py and p;. Localising at p, we may assume that A is
local with maximal ideal p. Since p = p, is minimal over <a1, . ,an>, it follows that
a; ¢ p, for some i. Without any loss of generality we assume that a; ¢ p,. Since there is
no prime ideal of A between p, and p, and <A, p0> is local, p, is the only prime ideal of

A minimal over <a1, pl>. Therefore, <a1, pl> = po. Thus, there exists an integer ¢ > 0
such that af = c;a1 + b;, where ¢; € A and b; € p1, 2 < i< n.

Let J = <b2, RN bn>. Clearly, p, contains J, but it is not minimal over J. For, if so,
then by the induction hypothesis ht(p,) <n — 1. But p1 2 -+ 2 pp41 is a chain of prime
ideals of length n. Thus, there exists q € Spec(A) such that J = (b, ...,bn) C q C p,.

Let bar denote the reduction modulo q. We claim that p is minimal over <a_1> It
suffices to show that p is the unique prime ideal of A containing (a1,q). If p € Spec(A)
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is such that p D <a1,q>, then p D <a1,J>. Since b; € J, al € p, and hence a; € p for
2 <4 < n. This implies that <a1, . ,an> C p C p. Therefore, p = p. This proves the
claim. Now, we have a chain of prime ideals p 2 p1 2 q in A which gives a chain of
prime ideals p 2 py 2 0 of length 2 in A/q. But, since p is minimal over <a_1>, by 1.6.1,
ht(p) < 1. This is a contradiction. Hence the theorem follows. O

1.7 Converse of Krull’s Theorem

Theorem 1.7.1 Let A a Noetherian ring and p be a prime ideal of A. If ht(p) =

r > 1, then there exist r elements a1, ...,a, in p such that p is minimal over the ideal
<a1, .o ,CLT>.
Proof. Since ht(p) > 1, p is not a minimal prime of A. Let pi,...,p; be the minimal
prime ideals of A. By Lemma 1.2.1, p ¢ U._;p,. We choose a1 € p, a1 ¢ U._;p;. Then
ht(a;) > 1.

Having chosen a1,as2,...,a; € p, j < r, we choose aj;q in the following manner.
Let us suppose that qf,...,q), € Spec(A) are the minimal prime ideals of A containing

{a1,...,a;). Then ht(q},) < j and hence p & qj, for k = 1,...,m. We choose aj1 € p
such that a;11 ¢ U™, q,.

We prove by induction that ht<a1, .. .,a¢> >idforalli, 1 <i<r. Thecasei=1
follows as above. Assume by induction that ht<a1, . ,a7;> > 4. Now, let q € Spec(A)
such that g O (a1,...,a;4+1). We show that ht(q) > i + 1. Since q D (a1,...,a;), by
induction ht(q) > 4. If ht(q) > i we are done. Assume ht(q) = 4. Then we claim that

g is minimal over <a1, ceey ai>. For, suppose there exists prime ideal q’ of A such that
q D g D {ai,...,a;). Then by induction ht(q’) > 4. Since ht(q) = i, it follows that
q" = q. This proves that q is minimal over <a1, .. .,ai>. Now, by the choice of a;y1,

ai+1 ¢ g. This contradicts the fact that g D (a1, ..., a;41). Hence ht(q) > i+ 1, proving
the claim.

Therefore, ht<a1, . ,ar> > r. Since ht(p) = r, p is minimal over <a1, cee ar>. This
completes the proof. O

1.8 Dimension of Polynomial Algebras
In this section we prove that if A is a Noetherian ring, then dim(A[X]) = dim(A) + 1.

Notation. 1.8.1 Let A be aring, I C A an ideal. We denote the extension of [ in the
polynomial ring A[X] by I[X].

Lemma 1.8.2 Let A be ring and p1 C p2 C p3 be a chain of prime ideals in A[X]. Then
we cannot have p1 NA=paNA=psnNA.

Proof. Assume to the contrary that a chain of prime ideals p1 C p2 C p3 exists with
the above property. By going modulo p; N A we may assume that A is a domain and
ppNA=p,NA=p;NA=0. Let S = A— {0}. Since there is a one-to-one correspon-
dence between prime ideals of S™1A[X] and prime ideals of A[X] which do not meet S,
we have S~1p, € S~1p, € S~lp,. However, since S71A is a field, S~1A[X] is a PID,
and hence is of dimension 1. Hence the lemma follows. ]

Lemma 1.8.3 Let A be a Noetherian ring and I be an ideal of A[X] with ht(I) = n.
Then ht(INA) >n—1.
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Proof. We split the proof in two cases.

Case 1. I is a prime ideal. Let I = p € Spec(A[X]). We claim that ht(p) = ht(p N A)
ifp=(pNA)[X]and ht(p) =ht(pNA) +1if p D (p N A)[X]. It is clear that any chain
of prime ideals qo € q1 € -+ € qs € (pN A) in A can be extended to a chain of prime
ideals

Q[X] S m[X] S CaX] S (PN A[X] Cp (6)

in A[X]. Let ht(p N A) = r. By Theorem 1.7.1, (p N A) is minimal over an ideal J which
is generated by r elements.

We claim that (pNA)[X] is minimal over J[X|, which is also generated by r elements.
For, if there exists a prime ideal q in A[X] such that J[X] C q C (p N A)[X], then
JCJX]INACqgnNnACpnA, and hence pN A = qN A. This implies that ¢ C
(pNA)X] = (qN A)[X] C q. Therefore, q = (p N A)A[X], yielding the claim. Hence by
Theorem 1.6.10, ht(p N A)[X] < r. Therefore, if p = (p N A)[X], then ht(p) < r. But
ht(p N A) = r, so that ht(p) > r by (6). Therefore, it follows that ht(p) = r.

On the other hand if (p N A)[X] C p, then there exists f(X) € p, f(X) ¢ (pN A)[X].
Since J is generated by r elements, I; = <J[X], f> is generated by r + 1 elements. We
claim that p is minimal over I;. Assuming the claim it follows by Krull’s theorem that
ht(p) < r + 1. Now, by (6), we have ht(p) > ht(p N A)[X] = ht(p N A) = r. Thus,
ht(p) > r + 1. Hence ht(p) = r + 1, proving the first assertion.

Proof of the claim: Suppose Iy C p’ C p for some p’ € Spec A[X]. Then J C
(p'NA) C (pNA). Since (pNA) is minimal over J, (p'NA) = (pNA). Since f ¢ (pNA)[X],
(PNAX]Cp Cp. But, (pnA)=(pnNA)[X]NA=p'NA=pnA, contradicting 1.8.2.
This proves the claim.

Case 2. I is any ideal of A[X]. By the Noetherian property of A, VI = Mi_,psi, where
P1,...,p, are the minimal primes over I. Then VINA = VIN A = Ni_,(p; N A).
Therefore, from 1.4.14 and the definition of height, ht(I N A) = ht(p; N A) for some
i =1,2,...,n. Using Case 1, ht(I N A) = ht(p; N A) > ht(p;) — 1 > ht(I) — 1. This
completes the proof. O

Corollary 1.8.4 If A is a Noetherian ring then dim(A[X]) = dim(A) + 1.

Proof. Note that for a maximal ideal m of A, % o~ %[X] is not a field. Since every
strictly increasing chain of prime ideals of A gives a strictly increasing chain of prime
ideals in A[X], and for a maximal ideal m of A, m[X] is prime but not a maximal ideal
of A[X], it follows that dim(A[X]) > dim(A) + 1.

Let dim(A) = d. We may assume that d is finite. Otherwise there is nothing to prove.
Assume that dim(A[X]) > dim(A) + 1. Let M be a maximal ideal of A[X] of height
> d+ 1. Then by 1.8.3, ht(M N A) > d. This contradicts the fact that dim(A) = d.

Hence the result follows. O
1.9 Integral Extensions

In this section we prove some basic results on integral extensions.

Definition 1.9.1 Let A be aring and f(X) € A[X]. Then f(X) is said to be a monic
polynomial if the coefficient of the leading term of f(X) is 1.

Definition 1.9.2 Let A — B be a ring extension. An element x € B is said to

be integral over A if f(x) = 0, where f(X) € A[X] is a monic polynomial i.e. if
2+ a1z '+ .-+ a, =0, where a; € A, and n > 0.
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Proposition 1.9.3 Let A — B be a ring extension. Then the following are equivalent.
1. x € B is integral over A.
2. Alz] is a finitely generated A-module.
3. Alz] is contained in a subring C' such that C is a finitely generated A-module.

Proof. (1) = (2): If x is integral over A, then 2" + a12"~! + -+ + a, = 0 for some
n>0and a; € A(1 <i <mn). Therefore, all powers of z lie in the A-module generated
by 1,z,...,2" 1. Hence A[z] is generated by 1,z,...,2" ! as an A-module.

(2) = (3): Taking C' = A[z], the result follows.

(3) = (1): Let ¢q,...,¢ generate C as an A-module. Let zc; = Z;Zl Aijcj, where
/\ij € A. Let
rT—A1  —Ai2 0 =
—A21 T — Az - —A1n
a - .. ... DEEEY
_)\nl _)\n2 X — )\nn

As in the proof of Nakayama Lemma we get det(a)C = 0. Since 1 € C, det o = 0.
Expanding the determinant, we see that x is integral over A. O

Example 1.9.4 Let A be aring and I C A[X] be an ideal containing a monic polyno-
mial and J = I N A. Then the extension A/J — A[X]/I is integral.

Proposition 1.9.5 Let A — B be a ring extension. If x1,...,z, € B are integral over
A, then Alzy,...,x,)] is a finitely generated A-module.

Proof. The proof follows by induction on n. O

Proposition 1.9.6 Let A — B be a ring extension. The set of all elements of B which
are integral over A is a subring of B containing A.

Proof. Let Cbe the set of all elements of B which are integral over A. Let x,y € C. Then
Alz,y] is a finitely generated A-module. Since A[z £ y] C Alz,y] and Alzy] C Alz,y],
it follows that A[z + y] and A[zy| are contained in a ring A[z,y], which is a finitely
generated A-module. Therefore, by 1.9.5, x +y and xy are integral over A and hence are
in C. O

Definition 1.9.7 The Subring C defined in 1.9.6 is called the integral closure of A
in B.

Let the notation be as in 1.9.6 and 1.9.7.
1. If B=C| then A — B said to be an integral extension. The ring B is said to be
integral over A. We say that B/A is integral.
If A=C, then A is said to be integrally closed in B.
3. If A=C'is a domain and B is the quotient field of A, then A is said to be integrally
closed.

N

Proposition 1.9.8 If A — B and B — C are integral extensions, then so is A — C.

Proof. Let x € C. Since C is integral over B, 2" +bj2" ' +---+b, =0, where b; € B

(1 < i < n). Therefore, x is integral over A[by,...,b,]. Since A — B is an integral
extension, each b; is integral over A. Therefore, A[by,...,b,] is a finitely generated A-
module. But as z is integral over A[by,...,b,], A[b1,...,by][x] is a finitely generated
Alby,...,by])-module. This implies that A[by,...,b,][z] is a finitely generated A-module.
Therefore, x is contained in a ring viz. A[by,...,by][x], which is finitely generated as an
A-module. By 1.9.3, it follows that x is integral over A. O
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Proposition 1.9.9 Let A — B be an integral extension. Let I be an ideal of B and
J=INA. Then A/J — B/I is an integral extension.

Proof. Let T € B/I, where bar denotes reduction modulo J. Since B is integral over A,
x satisfies a monic polynomial i.e., 2" +a;z" ' +---+a, =0, where a; € A, 1 <i < n.
It follows that T is integral over A/J. O

Proposition 1.9.10 Let A — B be an integral extension. Let S be a multiplicative
closed subset of A. Then S™'A < S™'B is an integral extension.

Proof. Let /s € S™'B, where x € B, s € S. Since A — B is integral, 2™ + ajz" ! +
-+ +ay, =0, where a; € A, 1 <1i < n. Dividing both sides by s", we get

n n—1
(E) +ﬂ(£) _|_..._|_a_2’:0.
S S S S

Thus, x/s is integral over S~*A. This proves the proposition. a.

Proposition 1.9.11 Let A < B be an integral extension of domains. Then A is a field
if and only if B is a field.

Proof. Suppose A is a field and z € B be a non zero element. Let f(X) = X" +
a1 X" '+ ... +a,, where a; € A, 1 < i < n, be a polynomial of least degree such that
f(x) = 0. Since B is a domain, it follows that a, # 0. As A is a field, a,,! € A and hence
the element (—a,) ' (2"t +a;2" "2 +---+a,_1) is inverse of x in B, proving that B is
a field.

Conversely, let B be a field and y € A be a non zero element. Let z = y~!. Then
2™+ aja™ 1t + .- 4 @), = 0, where a;/ € A, 1 < i < n. Multiplying by y™, we get
1+diy+---+al,y™ =0, ie yis invertible in A. Hence A is a field. O

Corollary 1.9.12 Let A — B be an integral extension. Let p be a prime ideal of A and
q be a prime ideal of B be such that qN A =p. Then p is a mazimal ideal of A if and
only if q is a maximal ideal of B.

Proof. The proof follows from 1.9.9 and 1.9.11. O

Theorem 1.9.13 Let A — B be integral extension of rings and p be a prime ideal of A.
Then there exists a prime ideal q of B such that qN A = p.

Motivation for the proof. If such a prime ideal q exists, then ¢ D pB and qN(A—p) =
®. This implies that pBN (A —p) = &. Assuming that the extension A < B is integral,
we first show that pB N (A —p) = & and then use this to prove Theorem 1.9.13.

Lemma 1.9.14 Let A — B be an integral extension, p a prime ideal of A. Then any
element x € pB satisfies an equation "+ a1z ' +---+a, =0, wherea; €p, 1 <i<n.

Proof. Let z € pB. Then = Y., p;b;, where p; € p and b; € B. Since B is integral
over A, Alby,...,b,] = S (say) is a finitely generated A-module. Let S = Aw;+- - -+ Aw,,
where w; € 5,1 <5 <.

Since b; € S, bjw; = 22:1 XirWg, where \;, € A. Since x = Z?:l pib; and p; € p,
we have zw; = >, _, gjxwk, where gjr € p, 1 < k < r. Now the proof follows as in the
proof of (3) = (1) of 1.9.3. O

Lemma 1.9.15 Let A < B be an integral extension of rings. If p is any prime ideal of
A, then pBN (A —p) = .
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Proof. Suppose to the contrary let x € pB N (A — p). Since = € pB, by Lemma 1.9.14,
it follows that " + a12" "' +--- + a,, = 0, where a; € p, 1 < i < n. This implies that
2™ € p and hence z € p, contradicting the fact that x € A — p. Hence the lemma. O
Proof of Theorem 1.9.13. In view of Lemma 1.4.10, we can extend pB to a prime ideal
q of B such that ¢ N (A —p) = ®. This implies that N A C p. Also, p CpBNAC qNA,
showing that p = q N A. Hence the theorem. O

Theorem 1.9.16 Let A — B be an integral extension of rings. Let p1 C po be prime
ideals of A and q1 prime ideal of B such that gy N A = p1. Then there exists a prime
ideal q2 of B such that g2 N A = po and q1 C qs.

Proof. Since A — B is an integral extension, by 1.9.9 it follows that A/p; — B/q is
an integral extension. Let us consider the following commutative diagram :

A—B

Lok

A/pr —— B/ay

Since p2 is a prime ideal of A/p; by Theorem 1.9.13, there exists a prime ideal, say qz,
in B/qy such that g2N (A/p1) = p2. Then ¥~ 1(q2) = g2 (say) is a prime ideal. Since the
above diagram is commutative, gz N A = ¢~!(p2) = pa. This completes the proof. a

Theorem 1.9.17 (Going-up Theorem) Let A — B be an integral extension of rings.
Let py C pa C -+ C pp be a chain of prime ideals of A and g1 Cq2 C -+ C qm (M < n)
be a chain of prime ideals of B such that q; N A =p; (1 < i < m). Then the chain
q1 Cq2 C -+ C qm can be extended to a chain q1 C q2 C --- C qp, such that q; N A =p;
for1 <i<n.

Corollary 1.9.18 If A — B is an integral extension of rings then dim(A) = dim(B).

Theorem 1.9.19 Let A — B be an integral extension of domains with A integrally
closed. Suppose p1 C po are prime ideals of A such that there exists a prime ideal qo of
B with the property that qo N A = po. Then there exists a prime ideal q1 of B such that
q1 g qo, and q1 ﬁAzpl

Motivation for the proof of 1.9.19. Suppose we have p; C po prime ideals of A and
there exists a prime ideal qo of B with the property that qo N A = pg. We want a prime
ideal q; of B such that g1 N A =p; and q1 C qo.

If such a prime ideal exists, then g1 (B—qo) = ®, g1N(A—p1) =P and g1 D p1B. In
that case it would follow that q1N(B—qo)(A—p1) = ® and hence p1 BN(B—qo)(A—p1) =
®. We show that if A < B is an integral extension of domains and A is integrally closed,
then this is the case and then use this to prove Theorem 1.9.19.

Lemma 1.9.20 Let A — B be an integral extension of domains, where A is integrally
closed with quotient field K. Then if b € B, the minimal monic polynomial of b over K
belongs to A[X].

Proof. Let f(X) = X"+ a; X" !+ .-+ a, be the minimal monic polynomial of b
over K, where a; € K, 1 < i <n. We show that a; € A for 1 <i <n. Let dy,...,d,
be the roots of f(X) in some algebraic extension L of K, where B C K. Note that
we can choose such a field L, as the quotient field of B is algebraic over K, B being
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integral over A. Since b is integral over A, b satisfies a monic polynomial, say ¢(X) over
A. Since f(X) is the minimal polynomial of b, it follows that f(X)|¢(X) in K[X], so
that ¢(d;) = 0, 1 < i < n. Hence the d;’s are integral over A for 1 < ¢ < n. Since
(X —d)(X —dy)- (X —dp) = X"+ a1 X" 1 + -+ + a,, the a; are integral over A,
1 < i < n. But, since A is integrally closed, it follows that a; € A, 1 < ¢ < n. This
completes the proof. O

Lemma 1.9.21 Let A — B be an integral extension of domains, where A integrally
closed with quotient field K. Let p be a prime ideal of A and b € pB. Let f(X) =
X™ 4+ X™ L 4o+ ¢,y be the minimal polynomial of b over K. Then c¢; € p for
1<i<n.

Proof. Since b € pB, it follows from 1.9.14 that b satisfies a monic polynomial g(X) =
X" +a; X" 14+ +a,, wherea; €p, 1 <i<n. Let f(X)=X"+c1 X" 1+ +ep
be the minimal polynomial of b over K. By 1.9.20, ¢; € A for 1 < i < m. Since f(X)
is monic, g(X) = f(X)h(X), where h(X) € A[X]. Let bar denote the reduction modulo

p. Since g(X) = X" = f(X)h(X), f(X) = X™, where m < n. This means ¢; € p for
1 < ¢ < m. Hence the lemma follows. O

Lemma 1.9.22 Let A — B be an integral extension of domains with A integrally closed
and p1 € po prime ideals of A such that there exists a prime ideal qo of B with the
property that qo N A =po. Then p1BN (B —qo)(A—p1) = .

Proof. Let a € (A—p1), b € (B—1qp) and ¢ = ab. Suppose to the contrary that ¢ € p1B.
Let f(X)= X"+ A\X"" !+ ...+ )\, be the minimal polynomial of ¢ over the quotient
field of A. From 1.9.21, it follows that \; € p;. Since a € A, the minimal polynomial of
b over the quotient field of A is X™ + (A\1/a)X"™ ! + .-+ (\,/a™). Since A is integrally
closed, by 1.9.20, \;/a’ € A for 1 <i < n. Let u; = \;/a’. Then as a ¢ p1, \; = a’y;
and \; € py, it follows that p; € p;. Since b + u1b" 1 + -+ + p, = 0, " € p1 B C qo,
implying that b € qg. This yields a contradiction. Hence the lemma. O

Proof of the Theorem 1.9.19. By Lemma 1.9.22 we get p1 BN (B —qo)(A—p1) = .
Using 1.4.10, enlarge p1 B to a prime ideal g1 of B such that g1 N (B —qo)(A —p1) = ®.
Then p; B C g7 implies that p; C g1 NA. Also g1 N(A—p1) = @ implies that g1 NA C p4,
so that g1 N A = p;. Moreover, q1 N (B — q¢) = ® implying that q1 C qo. O

Theorem 1.9.23 (Going-down Theorem) Let A < B be an integral extension of
domains where A is integrally closed. Let po C p1 C --- C Py, be a decreasing chain of
prime ideals of A and qo C q1 C -+ C qm (M < n) be a chain of prime ideals of B such
that q; N A = p; for 1 < i < m. Then the chain qo C q1 C -+ C qm (m < n) can be
extended to a chain qo C q1 C - -+ C qn, such that q; N A =p,; for 1 <i<n.

Corollary 1.9.24 Let A — B be an integral extension of domains with A integrally
closed. Let p be a prime ideal of B. Then ht(p) = ht(p N A).

Lemma 1.9.25 Let A be a ring and J be an ideal of A. If f(X) € A[X] is monic then
(JAIX], F(X)) N A=

Proof. The proof is an easy checking. ]

1.10 Dimension of Affine Algebras

Definition 1.10.1 Let k be afield, I C k[X3, ..., X,] anidealand A = k[X4,..., X,]/I.
Then A is said to be an affine k-algebra. If A is a domain, then we say that A is an
affine domain over k.
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In this section we prove the following theorem.
Theorem 1.10.2 Let A be an affine domain over a field k and p be a prime ideal of A.
Then ht(p) + dim (g) — dim(A).

Before proving the theorem we first prove some lemmas.

Lemma 1.10.3 Let k be a field, f(X1,...,Xn) € k[X1,...,X,] be a non constant poly-
nomial. Then there exist c1,...,cn—1 € N such that if ¢ is the ring automorphism of
E[X1,..., Xyl given by ol =1d, o(X;) = X; + X5 for1 <i<n—1and p(X,) = X,
then o(f(X1,...X,)) is monic in X, (after multiplying an element of k*).

Proof. We have

PXTH - X0m) = (X 4+ X" (X + X2)%2 - (Xog + X ) ot (X )

= Xgertohen—1an-1tan 4 terms involving a lower power of X,,.

Let X7'--- X7 and X' ... X/ be any two distinct monomials occurring in the

polynomial f(Xj,...,X,). We want to choose integers ci, ..., c¢,—1 such that

C161 +-- 4+ Cnflﬁnfl + ﬂn 7é C171 + -+ Cn—1Yn—1 + Yn- (7)
For, we choose t > max (v;,5;) (1 <i,j7<n). Let c; =" 1 co =t""2,... cpoq =t
We claim these ¢;’s satisfy equation (7). This follows by considering t-adic expansions.
It is now clear that if ¢ is suitably chosen, then ¢(f(X1,...,X,)) is monic. O

Lemma 1.10.4 (Noether Normalization) Let k[X1, ..., X,] be a polynomial ring in
n variables over a field k, I C k[X1,...,X,] an ideal and A = k[X1,...,X,]/I be an
affine algebra over k. Then there exists a polynomial subring B = k[Z1,...,Zm] of A
such that B < A is an integral extension.

Proof. We prove the lemma by induction on the number of variables n. If I = 0, we
choose B = k[X1,...,X,]. So, we assume that I # 0.

Suppose n = 1. Since I contains a monic polynomial, using 1.9.4, k — k[X;]/I is an
integral extension. Taking B = k, the result follows.

Assume n > 1. Let f(Xy,...,X,) € I, f # 0. Applying the automorphism ¢ in
1.10.3, viz. ¢|lx = Id, o(X;) = X; + X% for 1 <i <n—1and p(X,) = X, we may
assume that ¢(f) is monic in X,,. Let J = ¢(I). Then J contains a monic polynomial
viz. p(f). Hence using 1.9.4, k[X1,..., X 1]/JNE[X1,..., X0_1] < k[X1,..., X0]/J
is an integral extension. We claim that k[X7,...,X,]/I is integral over the image of
KXy — XS, Xpy — XY in k[Xq, ..., X,,] /1. Let

o(f) =X, +gi1(X1, . X)X+ +g0(Xa, o X)) €.

Since ¢~ 1(J) = I, we have o 1(f) = X! + gi—1(X1 — XS, ..., Xpo1 — X)X +
st go(Xy — X8, ..., X1 — X" 7") € 1. This proves the claim.

The image C of k[X; — X&,...,X,-1 — X;," '] in k;[Xl,...,Xn]/I is an affine
k-algebra in n — 1 variables. By induction there exists a polynomial subring B =
k[Z1,...,Zy) of C such that B < C is an integral extension. Since C' — A is inte-
gral, B <— A is integral, proving the lemma. O

Lemma 1.10.5 A Noetherian integral domain A is a UFD if and only if every height
one prime ideal of A is principal.
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Proof. Let A be a Noetherian UFD and p € Spec(A4) with ht(p) = 1. Let a € p, a # 0.
Since A is a Noetherian, a can be expressed as a = II7_;d; with d; € A, d; irreducible.
Since p is prime ideal, d; € p for some i. Since A is a UFD, <dl> is a (non zero) prime
ideal of A. Asht(p) =1, p= <di>. Thus, p is a principal ideal.

Conversely, assume that every height one prime ideal of A is principal. Since A is
Noetherian, any non-zero, non-unit element of A can be expressed as a product of finitely
many irreducible elements. So, it is enough to show that every irreducible element of A is
prime. Let a € A be irreducible and p be a minimal prime over <a>. Since A is a domain,
by Krull’s theorem ht(p) = 1. Therefore, by hypothesis p = <b> for some b € A, and
hence a = be for some ¢ € A. Then c is a unit as a is irreducible. Thus, <a> = <b> =p,
so that a is a prime element of A. O

Lemma 1.10.6 Let A be a UFD. Then A is integrally closed.

Proof. Let K be the quotient field of A. Let ¢,d € A and ¢/d € K be integral over A.
We show that ¢/d € A. We may assume without loss of generality that ¢ and d do not
have any common prime factors. Since ¢/d is integral over A, we have

n n—1
(5) +x0(5) + =0,
where \; € A, 1 < i < n. Multiplying this equation by d", we see that d divides c¢".
Hence d is a unit of A (otherwise d and ¢ have a common prime factor). This is proves
the lemma. O

Corollary 1.10.7 If k is a field and A = k[X1,...,X,] then A is integrally closed.
Lemma 1.10.8 Let A = k[X4,...,X,], p € Spec(A). Then ht(p)+ dim (%) = dim(A).

Proof. We prove the lemma by induction on number of variables n. It is clear that the
lemma is true for n = 1. Since the lemma is vacuously true for ht(p) = 0, we assume
ht(p) =7 > 0. Let p =po 2 --- 2 pr—1 2 pr = (0) be a chain of prime ideals of
length r. Then ht(p,—1) = 1. By Lemma 1.10.5, p,_1 = (f) for some f(X1,...,X,) €
k[X1,...,Xn]. By an automorphism of k[X7, ..., X,] (see 1.10.3), we may assume that
f is monic in X,. Thus,

k[ Xq,..., X,
B:k[Xl,...,Xn_l]%M:C

()

is an integral extension with B integrally closed. Let bar denote the reduction modulo
(f). Then p =g 2 --- 2 (f) = (0) is a chain of prime ideals in C of length r — 1. Let
pN B =q. Since ht(p) = r, ht(p) = r — 1. Now, from Corollary 1.9.24, we get ht(p) =
ht(q). Also, using 1.9.9 and 1.9.18, we see that dim(C/p) = dim(B/q). This implies that
ht(p) + dim(C/p) = ht(q) + dim(B/q). But, by induction, ht(q) + dim(B/q) =n — 1, so
that r + dim(C/p) = n. But, dim(C/p) = dim(A/p), hence the result follows. O
Proof of Theorem 1.10.2. By Theorem 1.10.4, there exists a polynomial subalgebra
B of A such that the extension B — A is integral. Let p N B = q. By 1.9.9 and
1.9.18, dim(A/p) = dim(B/q) and by 1.9.24, ht(p) = ht(q). Thus, by Lemma 1.10.8,

ht(q) + dim (B/q) = dim(B). Hence it follows that ht(p) + dim (%) = dim(4). O

2 Unimodular Rows

In this section we prove a few basic results on unimodular rows.
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2.1 Completability condition for a Unimodular Row over a Ring

A = commutative ring with identity element
A* = group of invertible elements of A
A[X1, Xa,...,X,] = polynomial ring in n variables X1, Xo,..., X,

over the ring A

<a1, as, ..., an> = ideal generated by a1, a9, ..., a,
[a1,az2,...,a,] = row with n entries a1,as,...,an
(a1,a2,...,a,) = 1 X n matrix with n entries ai,aq,...,a,

We recall that the set of all n x n matrices over a ring A is a ring under matrix
addition and matrix multiplication and is denoted by M, (A).

A matrix a € M,(A) is said to be invertible if there exists § € M, (A) such that
aff = Pa = I,. If « € M,(A) is invertible, then it follows that det(c) is a unit of A.
Conversely, if det(a) is a unit of A, it follows from the identity aadj(a) = adj(a) a =
det(a)I,, that « is invertible. The set of invertible matrices belonging to M, (A) form a
group under matrix multiplication and this group is denoted by GL,(A). Elements of
GL,(A) give rise to automorphisms of the free module A™.

The subgroup of SL,(A) of GL,(A) consists of all matrices with determinant 1.

Let E;;(A), i # j, A € A, denote the matrix I, + Ae;;, where e;; is the matrix with
1 in the (i, ) th position and zeroes elsewhere. The subgroup of SL,(A) generated by
E;;(N), A € A, is denoted by E, (A).

Definition 2.1.1 Let A be aring. A row [a1,az,...,a,] € A™ is said to be unimodular
(of length n) if the ideal <a1, a2y .-, an> = A. The set of unimodular rows of length n is
denoted by Um,(A4).

A unimodular row [a1,as,...,ay)] is said to be completable if there is a matrix in
GL,(A) whose first row is [a1, a2, ..., ap].

Notation. 2.1.2 Let [a1,a2,...,a,],[b1,b2,...,b,] € A™. We write,

GLn(A)

(a1,a2,...,a,) (b1,ba,...,by,)
if there exists a matrix M € GL,(A) such that
a1 b1
a9 b2
M =
an by

Remark 2.1.3 Let the notation be as in 2.1.2. Assume that

a1 b1

ag bg
M =

an bn,

24



where M € GL,(A). Tt follows that <b1, bo, ..., bn> C <a1, as, ..., an>. Further, since

b1 ay

bg a9
M1 =

by an

it follows then that <a1, as, ..., an> - <b1, bo,. .. ,bn>. Hence if

GL:’J(A) (b17b27" '7bn)7

then <a1, as,... ,an> = <b1, ba, ..., bn>. In particular, GL, (A) acts on the set of unimod-
ular rows of length n.

(al,ag,...,an)

Remark 2.1.4 Tt is easy to show that a unimodular row [a;,as,...,a,] € A™ is com-

GLn(A ..
2(4) (1,0,...,0). Similarly, one can define

. GL,(A) SL,(A) E,(A) .

The relations ~ 7, T~ '~ are equivalence

pletable if and only if (a1,as,...,an,)

SL,(A E.(A
the relations =(4) and § ).

relations on Umy, (A).

Example 2.1.5 If [a1,...,a,] € Um,(A4), then (a1,...,a,) ~ ) (a1+A2ag,az,...,a,)
E,(A)

and (a1,...,a,) ~ (a1 4+ Aoag + -+ Ap@n, a2, ..., Gp).
Theorem 2.1.6 Let A be a ring and [by, ba, ..., b,] € A™ be a unimodular row of length
n which contains a unimodular row of shorter length. Then the row [by,ba, ... by] is

completable. In fact; (b1,ba, ..., by) En(4) (1,0,...,0).

Proof. Without loss of generality we assume that the row [b1, b, ..., b,_1] is unimod-
ular. Hence we can find ay,as,...,a,-1 € A such that 1 — b, = a1b1 + -+ + an_1bp_1
i.e. apby + -+ ap_1bp—1 + b, = 1. Now, the result follows from the following steps:

(b1,bos b)) XY nbay b, 1) TR (0,0,.00,0,1) PRY (10,..0,0,1)

B (1)0,...,0,0). 0

Remark 2.1.7 It is clear that if A is a local ring, then any unimodular row is com-
pletable. For, suppose [a1,az,...,a,] € A" is a unimodular row in a local ring (A4, m). If
none of the a;’s are units, then <a1, as,..., an> C m. Hence at least one of the elements a;

is a unit. Thus, [a1,ag,...,a,] contains a unimodular row of shorter length. Therefore,

by Theorem 2.1.6, we have (a1, as,...,an) () (1,0,...,0,0).

The following theorem shows that this is also true if A is a semilocal ring.

Theorem 2.1.8 In a semilocal ring A any unimodular row [ai,...,a,] of length n > 2
is completable. In fact; (a1,as,...,a,) Ea(4) (1,0,...,0,0).
Proof. Let my, mo, ..., m, be all maximal ideals of A. Using 1.2.2, we can find by, ..., b, €

A, so that the element d = a1 + asbz + - - - + anby, ¢ Ul_;m;. This implies that d is a unit
in A and therefore, using 2.1.6,

(ar,as, - an) XY (doas,. . an) Y (,0,..,0).

Hence [a1, az, ..., a,] is completable. O
Convention. Let A be a Noetherian ring. Then ht(A) = co.
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Lemma 2.1.9 Let A be a Noetherian ring and I be an ideal generated by n elements
a1,as,...,a, such that ht(I) > n, n > 1. Then there exists 6 € E,(A) such that

(al,ag,...,an)0=(dl,dg,...,dn),
where dy,...,d, generate I and ht<d1,d2,...,di> > for1<i<n.

Proof. Since A is Noetherian, there are only finitely many minimal prime ideals of
A. By hypothesis ht(I) > n > 1, so that [ is not contained in any of the minimal
prime ideals of A. Therefore, by 1.2.2, we can find bs, ..., b, in A such that the element
d1 = a1 + agby + - - - + apb, does not belong to any minimal prime ideal of A. Therefore,

ht<d1> > 1. If dy is a unit, then by the above convention the elements di, as, . .., a, will
serve our purpose. So we assume that d; is not unit.
Assume, by induction we have chosen o € E,,(A) such that (a1,...,an)0 = (g1, .-, 9n),

where g1, ..., g, generate I and ht<gl> >1,..., ht<gl, e ,gi> >4, 1< n.

If <g1,...,gi> = A, then we set d; = g; for 1 < j < n. So, we assume that
<g1, e ,g7;> # A. Let pj1,...,psu be the minimal primes over <gl, . ,gi>. By Krull’s
theorem ht(p;;) < i for 1 < j < r. Since ht(I) = n > 4, it follows that I ¢ p;; for all j,
1 < j <r. Using 1.2.2, we choose ci,...,¢i, Cit2,...,cn € A such that

g;url =cig1+ -+ ¢Cigi + git1 + Cit2gito + -+ Cugn ¢ nglpij-

Let g; = g; for j # i+ 1. Then I = (91,---.9,) and ht{g},...,g},1) =i+ 1. Indeed;
recall that ht{g{,...,g}) > i and if p is minimal over the ideal (g},...,g}), then g/, & p.

Let q1,...,0ss be the minimal primes over <gi, . ,g§+1>. We claim that ht(q,;) >
1+ 1 for 1 < j < s. Let us assume to the contrary that ht(qij) < 1+ 1 for some
j. Since (gi,...,9;) C qi; and by induction ht{gi,...,g;) > i, we have ht(q;;) = i.
We show that q;; is minimal over <g'1, ceey g;> Assume to the contrary, suppose that
q € Spec(A) is such that (gi,...,9/) C q C qi;. Since ht(g,...,g}) > i, ht(q) > 4, so
that ht(q,;) > ¢ + 1. This contradicts our assumption. Therefore, it follows that q,; is

minimal over (g, ..., g,). By construction this implies that g}, ¢ q;;. This contradicts
the fact that (g{,...,g},,) C qij. Therefore, ht{(g{,...,g},,) > i+1. Hence by induction
the lemma follows. O

The proof of the following theorem follows ([16], Theorem 7.3, pg. 74).

Theorem 2.1.10 Let A be a Noetherian ring with dim(A) = d. Then for n > d + 2,
E,(A) acts transitively on Um,(A). In other words, any unimodular row of length n
over A is completable if n > d + 2.

Proof. Suppose [a1,as,...,a,] € A" is a unimodular row of length n, where n > d + 2.
By 2.1.9, we can find by,bs ..., b, in A such that (a1,as,...,a,) En(A) (b1,ba,...,by),

where ht<b1,b2,...,bi> >4 for 1 < i < n. It follows that ht<b1,b2,...,bd+1> >d+1.

But dim(A) = d, hence [b1, ba,...,b4+1] is unimodular. Thus, [by,bs,...,b,] contains a
unimodular row of shorter length, and so by Theorem 2.1.6, [b1, b, . . ., b,,] is completable.
In fact; (b1,bo,...,bn) =Y (1,0,...,0). Hence (ar,as,...,an) 57 (1,0,...,0).
This proves the theorem. O
Example 2.1.11 If [a1,a9,...,a,] is a unimodular row with integer entries, then it

follows by using the Euclidean algorithm that there exists a matrix in ¢ € E,(Z) such
that (a1,as2,...,an)0 = (1,0...,0).
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Lemma 2.1.12 For any ring A and for any ideal I of A the following diagram is com-
mutative (where the maps are the natural ones):

M, (A) x A" —— M, (A/I) x (A/T)"

| |

AN > (4/])"

Lemma 2.1.13 Let A be a ring and I be an ideal of A. Then the map E,(A) — E,(A/I)
18 surjective.

Proof. The proof follows from the fact that the generators E;;(\) of E,(A/I) can be
lifted to generators E;;(\) of E,(A). O

Definition 2.1.14 Let A be a Noetherian ring. We define the Jacobson radical of A
(denoted by Jac(A)) to be the intersection of all maximal ideals of A.

The following theorem generalises 2.1.8 and 2.1.10.
Theorem 2.1.15 Let A be a Noetherian ring and [a1,...,a,] € Um,(A). Suppose
n > dim (A/Jac(A)) + 2. Then (an,...,an) =" (1,0,...,0).

Proof. Since [a1,...,a,] € Um,(A), the row [a7,...,a,] is unimodular in A/Jac(A).
Since n > dim (A/Jac(A)) + 2, by Theorem 2.1.10, [a1, ..., ay] is completable. In fact;
En(A/Jac(A)) En(4)

(@1,...,an) (1,0,...,0). Then (ai,...,a,) (14 c1,c2,...,¢n),
by 2.1.12 and 2.1.13, where ¢; € Jac(A4). But, since ¢; € Jac(A), 1 + ¢; is unit
of A. Therefore, by Theorem 2.1.6, (1 + ¢1,¢2,...,¢n) Ea(4) (1,0,...,0). Hence
(a1, yan) Y (1,0,...,0), 0

2.2 Horrocks’ Theorem

The aim of this section is to prove the following theorem of Horrocks (c¢f. [12]). We
give two proofs due to Suslin, c¢f. ([16], pgs. 87 - 90).

Theorem 2.2.1 (Horrocks) Let (A,m) be a local ring and [f1(X), f2(X),..., fu(X)]
be a unimodular row in A[X] with one entry monic. Then [f1(X), f2(X),..., fn(X)] is
completable.

We need

Lemma 2.2.2 Let k be a field and B be a ring containing k such that B is a finite
dimensional k-vector space having dimension | say. Then the number of maximal ideals
of B <I.

Proof. If possible, let us assume that my, mg, ..., m;;1 are [ 4+ 1 distinct maximal ideals
of B. Then we have
m; +mmy .. M My ... My = B

Therefore, we can choose ¢; € mymg... m;_1m;yq...my4q such that ¢, —1 € m;. We
claim that ¢1,...,¢41 € B are linearly independent over k. Suppose to the contrary
that Zi; a;c; = 0in B, where a; € k and not all a; are zero. Without loss of generality
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+1 1

we may assume that a; # 0, so that ¢; = — Z¢:2 aj " a;c;, showing that ¢; € my. Since
c1 —1 € my, it follows that 1 € m;, a contradiction. Therefore, the elements cq, ..., 41
in B are linearly independent, yielding a contradiction. Hence the lemma follows. O

Now, we give the proof of the Theorem 2.2.1.

Proof 1. Clearly, any unimodular row of length 2 is completable. Let us consider the
case where n > 3. Without loss of generality we may assume that f;(X) is monic.
Let deg(f1(X)) = n and B = A[X]/{f1(X)). Then B is finitely generated A-module,
generated by the images of 1, X,..., X" 1. Hence A — B is an integral extension. We
now split the proof of the theorem into two parts.

Step 1. In this step we show that B is semilocal. First of all mB # B. This follows
from Nakayama lemma, since B is finitely generated A-module. Hence B/mB is a finite
dimensional A/m-vector space. Since A — B is an integral extension, maximal ideals
of B contract to the unique maximal ideal m of A. Therefore, maximal ideals of B are
in one-to-one correspondence with maximal ideals of B/mB. So, it suffices to show that
the number of maximal ideals of B/mB is finite. This follows from Lemma 2.2.2 as the
number of maximal ideals of B/mB < I, where [ = dim 4/, B/mB. This proves that B
is semilocal.

Step 2. By Step 1, B = A[X]/(f1(X)) is semilocal. Since n >3, n—1 > 2. Let bar
denote the reduction modulo < fi(X )> Using Theorem 2.1.8, we have

Enj\a(B)

(fQ(X)avfn(X)) (Tvﬁvvﬁ)
So, there exists a € E,_1(B) such that
72(X) 1
f3(X) 0
o . =
/) \D

where bar denotes the reduction modulo f;1(X). Applying Lemma 2.1.13, to the surjective
map A[X] — A[X]/(f1(X)), we can lift a to 0 € E,,_1(A[X]) and by 2.1.12 we get

f2(X) 1+ fi(X)hi(X)
f3(X) F1(X)ha(X)
£(X) £1 (X (X)
where h;(X) € A[X], 1 <i<n — 1. Therefore,
fi(X) f1(X) 1
SRS I o
This completes the proof. O

Proof 2. Let [f1(X),..., fn(X)] € Um,(A[X]) with f1(X) monic and ro(X),...,r,(X)
be the remainders obtained after dividing fo(X),..., fn(X) by f1(X). Then

En(A[X])

(fl(X)7f2(X)a"'vfn(X)) (fl(X)7T2(X)a-"arn(X))
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and deg(r;) < deg(f1) for 2 < i < n. Therefore, we may assume that deg(f;) < deg(f1)
if ¢ > 1. We split the proof into two parts.

Case 1. deg(f1) = 1. Then f1(X) = X — a; for some a1 € A and the unimodular
row [f1(X), f2(X),..., fn(X)] is of the form [X — a1,aq,...,a,], where ag,...,a, € A.
If a; € m for all i = 2,...,n, then by going modulo m, the row [X —a1,0,...,0] is
unimodular in k[X], where k = A/m. But this is a contradiction, as X — a1 is not unit
of k[X]. Hence a; ¢ m for some ¢, 2 < i < n and for that 4, a; is a unit. Therefore,
the row [X — ay,aq,...,a,] contains a unimodular row of shorter length and hence is
completable by Theorem 2.1.6, showing that [f1(X), f2(X),..., fn(X)] is completable.
Therefore, the theorem is proved in this special case.

Case 2. deg(f1) =1 > 1. As before we may assume deg(f;) < deg(f1) for 2 < i < n.
Our aim is to transform the unimodular row to another row with one of the entries
monic with degree less than deg(f1) and appeal to induction. Since [f1(X),..., fn(X)]
is a unimodular row, we have >_" ; fi(X)g;(X) = 1, where ¢;(X) € A[X]. If all the
coefficients of each f; for 2 < i < n, belong to m, we get f1(X)g1(X) =1 in (A/m)[X].
This implies that f1(X) is unit in k[X], where k = A/m. But this is impossible as f1(X)
is monic. Hence, without loss of generality, we may assume that not all coefficients of
f2(X) are in m. We show that the ideal {fi(X), f2(X)) contains a monic polynomial
of degree < deg(f1) — 1. Suppose f1(X) = X!+ a; 1 X"V + .- + ap and fo(X) =
beX¥ + by XF1 ... 4 by. Note that by assumption deg(f2) < deg(f1) i.e. k <1. We
define hy (X) = X% f5(X) — b f1(X). Then deg(h;) < deg(f1) and

hi(X) = (bg—1 — al_lbk)Xl_l + lower degree terms .

If b, ¢ m, then by, is a unit and multiplying f2 by b,;l we obtain the required polynomial.

We assume therefore that b, € m and hence on going modulo m, we get hy(X) =
bk_le_l + bk_QXl_Q +---in (A/m)[X] If b1 ¢ m, br_1 — aj—1by §§ m, as b € m.
Thus, in this case we have produced a polynomial hi(X) in (f1(X), f2(X)) such that
deg(h1) = deg(f1) — 1 and the leading coefficient of hi(X) is a unit of A.

Otherwise, since by assumption not all coefficients of fo(X) are in m, let ¢ be the small-
est natural number such that by_; ¢ m. Assume by induction that we have constructed
for i < t a polynomial h;(X) = ;1 X7+ +¢o € (f1(X), f2(X)) such that h;(X) =
br—i X' 14+bp_;_1 X!=2+--- in (A/m)[X]. Note that we can start the induction for i = 1
as above. Having constructed h;(X) we define, h;j11(X) = Xh;(X) — ¢—1f1(X). Thus,
if hy—1(X) = di—1 X7+ -+ dp is such that hy—1(X) = by ) X T+ bpy X172+ -
in (A/m)[X]. Then hy(X) = Xh;_1(X) — di_1 f1(X). The coefficient ¢ (say) of X'~! in
hi(X) is congruent to by, modulo m. But, by assumption by_; ¢ m, and hence ¢~ h;(X)
is monic of degree [ — 1. Thus we have constructed a polynomial h(X) = ¢~ h(X) in
(f1(X), f2(X)) such that h(X) is monic and deg(h) = deg(f1) — 1.

The assumption deg(f;) < deg(f1) for ¢ > 1 implies that deg(h) > deg(fs). If
deg(h) > deg(fs3), then h+ f3 is monic. Suppose deg(h) = deg(f3). Since f3 is not monic
(otherwise we are through), the leading coefficient of f3 = a (say), is in m. Hence 1+ a
is a unit of A and h + f3 = (1 +a)X'~! + lower degree terms .

Let h(X) = g1(X) f1(X)+g2(X) f2(X) for some g1(X), g2(X) € A[X]. By considering

1 0 .
0 1 0O

o = glgglo.
0 0 0 1 0
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we get

fi fi

f2 fo
U f.3 _ ijf:s

fn fu

Therefore, multiplying h + f3 by (1 +a)~!, we have produced an equivalent unimodular
row to the given unimodular row with a monic entry of degree [ — 1. Proceeding induc-
tively we can produce an equivalent unimodular row to the given one with a monic entry
of degree 1. In that case the proof follows from Case 1. Hence the theorem. a

2.3 Local-Global Principle

The aim of this section is to prove following Local-Global Principle due to D. Quillen,
¢f. [29]. The proof we give is due to Vaserstein. We follow ([17], pg. 848).

Theorem 2.3.1 (Local-Global Principle for GL,(A[X])) Suppose A is a ring and
[f1(X),..., fn(X)] is a unimodular row. If

(F1(X),os fu(X)) S0 (f1(0), o fal0))
for all maximal ideals m of A, then
(A1), £a(0)) D (£100), 0 £a0).

We will prove the theorem when A is a domain.

Remark 2.3.2 Inorder to check that (f1(X),. .., fo(X)) T &Y (110, ..., £0(0)),

it is enough to check that (f1(X),..., fn(X)) Gl (2 XD (1,0,...,0). For, we have
[£1(0),..., fn(0)] is a unimodular row in a local ring A, and hence is elementary equiv-
alent to [1,0,...,0] by 2.1.7.

To prove the theorem we first prove the following lemma.
Lemma 2.3.3 Let A be an integral domain, S a multiplicative closed subset of A. If

GLn(STYA[X])

then there exists ¢ € S such that

GLn(A[X,Y])

(fl(X_FCY)v"'vfn(X_FCY)) (fl(X)vvfn(X))

Proof. Let f(X) = [f1(X),...,fn(X)] and f(0) = [f1(0),..., fn(0)]. By hypothesis
it follows that there exists a matrix, say o(X), in GL,(S7'A[X]) such that f(X) =
a(X)f(0). Therefore, f(0) = o(X)~!1f(X) is constant and hence invariant under the
translation X — X+Y, ie. o(X) 71 f(X)=0(X+Y) 1 f(X+Y) = f(0). Let 7(X,Y) =
o(X)o(X +Y)~t Then

T(X, VX +Y)=0(X)o(X + V) (X +Y) = o(X)f(0) = f(X).
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Since 7(X,0) = I,,, we can find ¢ € S such that 7(X,cY) € M, (A[X,Y]). Further,
as det(o(X)) is a unit of S71A (since o(X) € GL,(S71A[X])), we get det(o(X)) =
det(o(X + ¢Y)). Therefore, det(7(X,cY)) = det(o(X)) det(o(X + c¢Y)~!) = 1. This
implies that 7(X,cY) € SL,(A[X,Y]) and

7(X,eY) (X +¢Y) =o(X)o(X +cY) (X +cY) =a(X)f(0) = f(X).
This completes the proof. O

Proof of Theorem 2.3.1. Let f(X) be as above and

J={ce Al (X +eY), ... fu(X +ev)) TAXYDx), L 0O))

We first show that J is an ideal.

Let ¢1,¢0 € J. Then there exist matrices 01(X,Y) and 02(X,Y) in GL,(A[X,Y])
such that o1 (X, Y)f(X + 1Y) = f(X) and 02(X,Y) f(X + 2Y) = f(X). Hence we get
(X +aY, V) f(X + (a1 +)Y) = f(X+cY). This gives

GLn(A[X,Y])

(fl(X+ (Cl +62)Y)""7fn(X+ (Cl +62)Y) (fl(X)7vfn(X))

Therefore, ¢y + co € J. Similarly, if ¢ € J and A € A by considering the substitutions
X — X and Y — XY it follows that cA € J and hence J is an ideal.

We claim that J = A. Suppose not, then J C m for some maximal ideal m of A. By
hypothesis, (f1(X),. .., fu(X)) CX D (210), ., £4(0)), s0 by Lemma 2.3.3, there
exists ¢ € § = A — m such that

GLn(A[X,Y])

(fl(X+CY)7"'7fn,(X+CY)) (fl(X)avfn(X))

This implies that ¢ € J, but ¢ ¢ m. This is a contradiction and hence the claim. Now,

since 1 € J, we have (fi(X +Y), .., fu(X +Y)) QYD x0) L £(X). So
there exists 0(X,Y) € GL,(A[X,Y]) such that

f1(X+Y) f1(X)

fo X +Y) f2(X)
o(X,Y) . = .

JulX +Y) falX)

Let us consider the homomorphism ¢ : A[X,Y] — A[Y], sending X — 0and ¥ — Y.
Then we obtain a matrix ¢(0,Y) € GL,,(A[Y]) C GL,(A[X,Y]) such that

fY) 11(0)

fa(Y) f2(0)
0(0,Y) . = .

ful) £a(0)

Replacing Y by X it follows that (f1(X), ..., fo(X)) TSPV (110), ... fa(0)). O
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2.4 Generalisation of Horrocks’ Theorem

The aim of this section is to prove the following generalisation due to Quillen (¢f.[29])
and Suslin (¢f.[39]) of Horrocks theorem. We give two proofs one following Ravi Rao
(¢f.[31]) and another proof using a trick of Mandal.

Theorem 2.4.1 (Quillen-Suslin) Let A be a domain and [f1(X),..., fo(X)] be a uni-
modular row in A[X| with one entry, say f1(X), monic. Then the row [f1(X),..., fn(X)]
is completable.

Proof. We write

fl(X) =X+ alrl,lX”*l + -+ ap
fQ(X) = a’2T2XT2 + ag(rg_l)XW*l + . 4 ag

fn(X) = anrnXT"L + Cln(rnfl)Xrnfl + -+ ano.
Now, consider polynomials g1, ..., g, defined as follows:

gl(X) =ajgX"™ +ap X4 41
g2(X) = a0 X"™ +an X"+ +agy,

gn(X) = anoX™ + a1 X7+ + ap, -

We claim that the new row [g1(X),..., gn(X)] is unimodular in A[X]. To prove the
claim let us first show that, [g1(X),...,g.(X)] € Um,(A[X,X1]). By hypothesis,
[fl(X)a A fn(X)] € Umn(A[X]) Hence [fl(Xil)a LR fn(Xil)] € Umn(A[Xil]) Fur-
ther, f;(X 1) = X 98/ g,(X) for all i, 1 <i <n. So

(X el g (X),..., x~deelfn) g (X)) € Um, (A[X1)).

Thus, there exist h1(X), ..., h,(X) € A[X] such that > | X ~delfi) g, (X)h; (X 1) = 1.
Multiplying both sides by X¢, for sufficiently large d, we get X% € <g1 (X),... ,gn(X)>.
Now, if (g1(X),...,gn(X)) # A[X] then there exists some maximal ideal MM of A[X]
such that, (g1(X),...,gn(X)) € 9. Since X¢ € M, X € M and since g;(0) = 1
1 € M. This is a contradiction. Hence [¢1(X), ..., g, (X)] € Um,(A[X]). Since the row
[f1(X),..., fo(X)] is unimodular, setting X = 0, it follows that (aio,...,an0) = A.
Let m be a maximal ideal of A. Then at least one of the a; (1 < i < n) is not
in m and for that ¢, ¢;(X) has leading coefficient a unit of A,. So localising at m

and applying Horrocks’ theorem we have (g1(X),...,gn(X)) Gln(AnlX)) (1,0,...,0)
for all maximal ideals m of A. Hence by Quillen’s Local-Global Principle we have

(G1(X), .., gn(X)) CTED (51(0), ..., ga(0)). But, g1(0) = 1, so by Theorem 2.1.6,
(9100, .., gn(0)) "2 (1,0,...,0), hence (g1(X), ..., gn(X)) " (10, 0).
Setting X = 1, we get (g1(1),...,9n(1)) (D (1,0,...,0). Again by applying Hor-
rocks’ theorem we have (f1(X),..., fn(X)) Gl (L XD (1,0,...,0) for all maximal ideals

m of A and hence by Quillen’s Local-Global Principle

GLn(A[X])

(f1(X), .., fu(X)) (f1(0), -+, fn(0)).
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In particular, setting X = 1, (f1(1),..., fa(1)) Gl

these it follows that,

(f1(0),..., fn(0)). Combining

GLn(A[X])

(£, (X)) T (11(0), L £a0))
D (1), fa(1) = (911, a(1)
G QD (1,0, 0 0),

Hence [f1(X),..., fo(X)] is completable. This completes the proof. O

The following proof is based on a trick of Mandal, ¢f. ([18], Remark 1.3).

Proof 2. Let [f1(X),..., fn(X)] € Um,(A[X]) with f1(X) monic. We define polyno-
mials h;(X,T) as follows: h;(X,T) = T8 f;(X — T + T~'). It then follows that for
HX)=X"+a X" 4+ +a,

T"HX —T+TH=TX -T*+1) +a1T(TX -T?*+1)" '+ +a,T"

i.e., hi(X,T) is monic in T and h1(X,0) = 1. We claim that [hy(X,T),...,ho(X,T)] €
Um, (A[X,T,T71).

By hypothesis, there exist g1(X), ..., g,(X) € A[X] such that > | fi(X)g:(X) = 1.
Hence we have > ;" | fi(X =T+ T 1) g;(X — T +T~1) = 1. This implies that

D T R(X, T)gi(X =T +T71) = 1. (8)

=1

This proves the claim. Now, we show that I = (hi(X,T),...,h,(X,T)) = A[X,T].
For, if I # A[X,T], then I C 9 for some maximal ideal 9 of A[X,T]. Multiplying
equation (8) by large power of T we get, T € I for some natural number s > 0, hence
T € 9. But hi(X,0) =1, so that 1 € 91, a contradiction.

Now take B = A[X]. Since h1(X,T) is monic in T, by Horrocks’ theorem

GLn(Bw[T])

(h(X,T),...,hpo(X,T)) (1,0,...,0)

for every maximal ideals m of B. Therefore, by Quillen’s Local-Global Principle

GL,(B[T
(h(X,T), ..., ha(X,T)) S ((X,0),.. . ha(X, 0)).
. GLn(B)
In particular, (h1(X,1),...,hn(X,1)) ~ ~ " (h1(X,0),...,hn(X,0)). As hi1(X,0) =1,

it follows that [h1(X,0),...,h,(X,0)] contains a unimodular row of shorter length and

hence by Theorem 2.1.6, (h1(X,0),...,h,(X,0)) r(p) (1,0,...,0). Therefore, we have

(fl(X)7 .- 7fn(X)) = (hl(X7 1)) .- -vhn(Xa 1))
GLn(B)

~ " (h(X,0),...,h,(X,0))
=3 1,0, 0).
This completes the proof. O

Corollary 2.4.2 (Quillen-Suslin). Let k be a field and A = k[X1,...,X4]. Then any
unimodular row of length n over A is completable.
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Proof. The proof follows from 1.10.3 and 2.4.1.

Remark 2.4.3 The following principle is implicitly used in the proof of 2.4.1. Let A
be ring. If [f1(X),..., fn(X)] € Um,(A[X]) and suppose (f1(X),..., fn(X)) GLa(d1X])
(f1(0),..., fn(0)). Then for any specialisation X — a € A (fi(a),..., fn(a))
(£1(0), -, £a(0)). Hence (f1(X), .., fa(X)) TV (£1(a), ..., fu(a)) forevery a € A.

GLn(A)

2.5 A Theorem of Suslin

The aim of this section is to apply Quillen’s local-global principle to give a partial
proof (assuming 2.5.4) of the following theorem of Suslin, cf. [39].

Theorem 2.5.1 Let A be a ring, [ao, ... ,as] € Umy,y1(A). Then the row [al°,. .., al]
is completable if n!|ro---ry,, where ro,...,r, are natural numbers.

The following lemma is based on an unpublished remark of Mohan Kumar.

Lemma 2.5.2 Let A be a local domain, [ag, ..., a,] € Ump41(A) and r > 0 an integer.

Then [af, a1 + ao X, ag, ..., ay] € Um,(A[X]) and (af,a1 + aoX, a2, ..., an) Gl 2 (ALXD
(1,0,...,0).

Proof. It is easy to check that [af,a1 + aoX,ag,...,ay] € Ump41(A[X]). If a; ¢ m
for some i € {0,2,3,...,n}, then by Theorem 2.1.6, the row [afj, a1 + aoX,ag,...,an]
is completable and the lemma is true in this case. So we assume that a; € m for all
i € {0,2,3,...,n}. Since [a},a1,az,...,a,] is a unimodular row, it follows that a; is
a unit of A. Hence [af,a1 + aoX]| € Umy(A[X]) (since any maximal ideal of A[X]
containing <a6, a1+ agX > has to contain a1, which is a unit). Therefore, the unimodular

row [af,a; + apX, az,...,a,] contains a unimodular row of shorter length and hence
GLpy1(A[X

(af,a1 + apX,aa,...,an) Ha(Alxh (1,0,...,0). O

Lemma 2.5.3 Let A be a domain, v > 0 a natural number and [ag, a1, ...,a,] a uni-

modular row of length n+ 1. Then, there exists « € GLy4+1(A) such that
(ag,ai1,...,an)a = (ap,al, ..., an).

Proof. By 2.5.2, we can apply Quillen’s localization theorem to the unimodular row
[af, a1 + apX, as, ..., a,]. Setting X =0 and X = —1, we obtain

GLny1(A)
~J

(ap,a1,ag,...,an) (ag, a1 — ag,az, ..., an).

Moreover, af — aj = A(a1 — ag) for some A € A, i.e af = af + A(a1 — ap), so that

r En+1(A) r
(ag,a1 — ap,az, ..., an,) ~ (a1,a1 — ag,ag, ..., ap).
GLn+1(A) .
Hence (af, a1, a2,...,a,) ~ (al,a1 —agp,as,...,ay,). Now, repeating the above pro-
. . GLp11(A)
cess with unimodular row [a}, a1 —ag, az, . . ., a,], we get (a7, a1 —ag, ag, ..., a) ~
GLny1(A)
(al,a1 — ap — a1,az,...,a,) = (af, —ag,az,...,a,). Hence (aj,a1,az,...,a,) ~
. GLnt1(A)
(aY,—ag,ag,...,ay). i.e. (al,a1,aza,...,a,) ~ (ag,al,az,...,an). O
Theorem 2.5.4 (Suslin). (cf. [39]) Let A be a domain and [ag,...,a,] € Um,11(A).
Then the row [ag,a1,a3 ..., a"] is completable.
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Corollary 2.5.5 Let A be a domain and [ag, a1, ag,...,a,]) € Uny,y1(A). Then the row

o
[ag, a1, az,...,an—1,al] is completable.

Proof. The proof follows from 2.5.4 and 2.5.3. |
Proof of Theorem 2.5.1. The proof follows from 2.5.3 and 2.5.5. a

2.6 Quillen’s Decomposition

The aim of this section is to prove a splitting lemma of Quillen (¢f. [29]) and deduce
some consequences which will be used later. We follow the proof given in [11].
Let A be a domain and s be a non zero element of A. Suppose o(X) € GL,,(4:[X])
is such that ¢(0) = I,,. Then there exists a positive integer N such that for all ny > N
and for all A € A, 0(As™ X) € M,(A[X]). Further, det(c(X)) is a unit of A[X] and
hence unit of A. Therefore, det(o(X)) = det (¢(0)) = 1. Hence det(o(As™* X)) =1 and
therefore, o(As" X) € GL,,(A[X]).

Lemma 2.6.1 (Quillen) Let A be a domain and s,t € A be such that sA+tA = A.
Suppose there exists 0(X) € GLy(Ast[X]) with the property that o(0) = I,,. Then there
exists Y1 (X) € GL,(A,[X]) with ¥1(0) = I,, and ¥2(X) € GL,(A:[X]) with 2(0) = I,
such that o(X) = (Y1(X))t(2(X))s.

(Here (¢1(X))¢ is the image of 11(X) in GL, (A [X]) and (2(X))s is the image of
$2(X) in GLy(Ay[X]).
Proof. Since 0(0) = I,, 0(X) = I, + X7(X), where 7(X) € M, (A44[X]). So, we can
choose a large integer N; such that o(As*X) € GL,(A4;[X]) for all A\ € A and for all
k > Ny. We define a matrix 3(X,Y, Z) € GL,(A4[X,Y, Z]) as follows:

BX,Y,Z)=o((Y + 2)X)o(Y X)™ 1. 9)

Then 8(X,Y,0) = I,,, and hence there exists large integer Ny such that for all k& > Ny
and for all u € A we have 3(X,Y, ut*Z) € GL,(A[X,Y, Z]). That means,

BX,Y, ut*Z) = (01(X, Y, Z)), (10)

where 01 (X,Y, Z) € GL,(A,[X,Y, Z]) with o1(X,Y,0) = I,.

Let N = max(Ny, N2). By hypothesis, it follows that <5N> + <tN> = 1. Thus,
there exist A\, € A such that As™ + utV = 1. Setting Y = sV, Z = utV, we get
from (9), B(X,As™, utV) = o(X)o(AsV X)7L. Setting Z = 1, Y = AsV in (10), we
gEt ﬂ(Xa )‘SNa/J’tN) = (Jl(Xa )‘SNvﬂtN))t = (d}l(X))ta where 1Z)l()() € GLn(AS[X])
Therefore, o(X)o(As™¥ X)™1 = (¥1(X))s. Let o(AsVX) = (¢2(X))s, where 12(X) €
GL,(A:][X]). Since 0(0) = I, ¥1(0) = 12(0) = I,. Now, the result follows by using the
identity, 0(X) = o(X)o(AsV X) " to(AsV X). O

Remark 2.6.2 Let the notation be as in 2.6.1 By interchanging the roles of s and ¢
we can write o(X) = (11(X))s(72(X))¢, where 71 (X) € GL,,(A;[X]) with 71(0) = Id and
72(X) € GL,,(As[X]) with 72(0) = Id.

Definition 2.6.3 Any two matrices o and § in GL,(A) are said to be connected if
there exists 0(X) € GL,(A[X]) such that ¢(0) = « and o(1) = 8. By considering the
matrix o(1 — X), it follows that if « is connected to 3, then § is connected to .

Lemma 2.6.4 Let A be a ring. Then any matriz in E,(A) can be connected to the
identity matrix.
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Proof. Let o € E,(A) be any matrix. Then, o = II[_, E;;(A). We define o(X) =
II7_, E;j(AX). Then o(X) € GL,(A[X]), 0(0) = I, and o(1) = a. This proves the
lemma. O

Corollary 2.6.5 Let A be a domain, s,t € A be such that sSA+tA = A and 7 €
GL,(As) be such that T can be connected to the identity matriz. Then T = 7172 for
some 11 € GL,(As) and 7o € GL,(As).

Proof. The proof follows by applying 2.6.1, and setting X = 1.

Lemma 2.6.6 Let A be a domain. If o1 € E,(As), 02 € E,(Ay), then o102 = (102,
where 1 € GL,(A;) and Bo € GLy(Ay).

Proof. Since o109 € E,(Ag), there exists a(X) € GL,(Ax[X]) such that «(0) = I,
and a(l) = g102. By remark 2.6.2, a(X) = 61(X)d2(X), where 6;(X) € GL,(A[X])
and d3(X) € GL,(As[X]). Setting X = 1, we get o102 = 102, where 8; = 61(1) and
B2 = d2(1). This proves the lemma. O

Lemma 2.6.7 Let A be a domain. If o1 € GL,(As),00 € En(Ay), then o109 = (102,
where 1 € GL,(Az) and Bo € GLy,(Ay).

Proof. We can write o109 = olagoflal. Therefore, it suffices to show that ologafl =
172, where v1 € GL,(A;) and 75 € Gl,,(As). Then the result follows by setting 8; =
1,82 = 201. Since any elementary matrix can be connected to the identity matrix,
we can find «(X) € GL,(A;[X]) such that «(0) = I, and «(l) = os. Let §(X) =
ora(X)oy'. Then §(1) = oy0207". Since §(X) € GL,(A«[X]) and 6(0) = I,,, by
2.6.2, 5(X) = 51(X)52(X), where 51(X) € GLn(At[X]) and (52(X) S GLn(Ag[X]) Let
~v1 = 61(1) and 75 = d2(1). Now, the lemma follows. O

Remark 2.6.8 Proceeding similarly one can prove that if o1 € E,(As) and o9 €
GL,(As), then o109 = 3132, where 81 € GL,(A:) and B2 € GL,,(As).

2.7 On a Theorem of Ravi.A.Rao
In this section we prove a weaker version of the following theorem of Ravi.A.Rao. For

details see [31].

Theorem 2.7.1 Let A be a ring and [f1(X),..., fo(X)] be a unimodular row in A[X]
with f1(X) monic. Then if n > 3, there exists an elementary matrixz which transforms

(f1(X),..., fa(X))" to (1,0,...,0)".

Proof. cf. [31].
In view of Lemma 2.6.4, the following theorem is a special case of Ravi’s Theorem.

Theorem 2.7.2 Let A be a domain and [f1(X),..., fo(X)] € Um,(A[X]) with f1(X)
monic. Then there exists a matric o(X, W) € GL,(A[X,W]) such that o(X,0) = I,

and
f1(X) 1
f2(X) 0
a(X,1) . =1 .
fa(X) 0

i.e. we can find a matriz which can be connected to the identity matriz taking the column

(fis f2y- -y )t to (1,0,...,0)".
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Proof. Case 1. Suppose

By 2.4.1 there exists 5(X) € GL,(A[X]) such that
H1(X) 1
f2(X) 0
B(X) : =
ful(X) 0
So, we have following;:
J1(0) 1
f2(0) 0
5(0) =
a(0) 0
1 1
0 0
=p0) . | =] . (using (11))
0 0
H1(X) 1
f2(X) 0
= B0)"'B(X) : =
£a(X) 0
Let o(X) = 8(0)"*8(X). Then ¢(0) = I, and
H1(X) 1
f2(X) 0
o(X) . =
£a(X) 0

We set a(X, W) = o(XW), proving the result in this case.

Case 2. To establish the result in general we apply the trick of Mandal used earlier. We
introduce a new variable T and consider the ring A[X,T,T~!]. Let

h(X,T) =T fy (X =T +T7)

hi(X,T) =T+ £ (X —T 41771

fori=2,...,n. Then as in 2.4.1, we get (1) h1(X,T) is monic in T" and h1(X,0) =1, (2)
(X, T),...,h(X,T)] € Um,(R[X,T]), (3) hi(X,0) =0 for i > 1 and (4) hi(X,1) =
fi(X).
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Therefore, [h1(X,0),...,h,(X,0)] = [1,0,...,0] and hence by Case 1, there exists
B(X, T,W) e GL,(A[X,T,W]) such that 5(X,T,0) = I,, and

hi(X,T) 1
ho(X,T) 0
B(X,T,1) . -

hn(X,T) 0
Let a(X,W) = B(X,1,W). Then «(X,0) = B(X,1,0) = I,. Since o(X,1) = 8(X,1,1)
and h;(X,1) = f;(X) for 1 <4 <n, we have

f1(X) 1

f2(X) 0

a(X,1) . =1 .

fn(X) 0

This completes the proof of the theorem. O

Lemma 2.7.3 Let [f1(X), f2(X)] € Uma(A[X]). Then there exists a matriz 7(X) €
GL2(A[X]) such that 7(0) = Iy and

(55 )= (40 )
Proof. Since any row of length 2 is completable, there exists a matrix o(X) € GLa(A[X])
such that LX) ) .
(55 )-(0)
(40 )=(0)
o 45)) - (49)
Setting 7(X) = 0(0)~1o(X), the lemma follows. O

Lemma 2.7.4 Let A be a ring and [f1(X), ..., fo(X)] € Um, (A[X]) with f1(X) monic.
Then there exists a matriz 7(X) € GL,(A[X]) such that 7(0) = I,, and

Hence

Therefore,

f1(X) £1(0)

f2(X) f2(0)
7(X) . = .

ful(X) £(0)

Proof. Since f1(X) is monic, by Horrocks’ theorem and Quillen’s localisation theorem
there exists o(X) € GL,(A[X]) such that

f1(X) £1(0)

£2(X) £2(0)
o(X) . = .

Ful(X) £(0)
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Hence

f1(X) f1(0) f1(0)
f2(X) f2(0) f2(0)
o(0)"to(X) . =o(0)7! . =
falX) 7(0) £a(0)
Setting 7(X) = 0(0) "o (X), the lemma follows. O

2.8 Suslin’s Monic Polynomial Theorem

The aim of this section is to prove a simpler version 2.8.4 of Suslin’s monic polynomial
theorem, cf. ([16], pg. 93).

Lemma 2.8.1 Let A be a Noetherian ring with dim(A) = d. Suppose M is a mazimal
ideal of A[X] such that ht(9) =d+ 1. Then M N A is also a mazimal ideal of A.

Proof. From Lemma 1.8.3, it follows that ht(9 N A) > d. But, as dim(4) = d,
ht(MM N A) = d and hence MM N A is a maximal ideal of A. O

Lemma 2.8.2 Let A be a Noetherian ring, 9 C A[X]| a mazimal ideal of height d + 1.
Then 9 contains a monic polynomial.

Proof. Suppose MN A = m. It follows from Lemma 2.8.1 that m is maximal ideal in A.
The isomorphism

AL Ay

mA[X] m

implies that the ideal mA[X] of A[X] is not maximal. Note that 9 contains mA[X]. Let
f(X)=ao+a1 X+ -+ a, X" be a polynomial of smallest degree in 9 — mA[X]. If
a, €m, then ag+a1 X +++-+a,_1 X"t € M—mA[X]. This is impossible by the choice
of f(X). Hence a,, ¢ m, so that there exists b, € A such that a,b, — 1 € m. Therefore,
b f(X) = (anby, — 1)X™ € M is the required monic polynomial. O

Lemma 2.8.3 Let A be a Noetherian ring with dim(A) = d and I be an ideal of A[X]
such that ht(I) = d+ 1. Then I contains a monic polynomial.

Proof. By 1.4.13, it follows that /I = N7, p; where, the prime ideals p; are minimal over
I. But, ht(I) = d+1 implies that ht(p;) > d+1. Since dim(A[X]) = d+1, ht(p;) = d+1,
and the prime ideals p; are maximal. Hence by Lemma 2.8.2, each p; contains a monic
polynomial. So, by taking the product of the monic polynomials belonging to p; for each
i, we get a monic polynomial in /1. By taking some large power of that polynomial we
get a monic polynomial belonging to I. O

Theorem 2.8.4 Let A be a Noetherian domain of dimension d and
[f1(X), fo(X), ..., fu(X)] € Um,(A[X]), where n > d + 2. Then we can find a ma-
triz B(X) € GL,,(A[X]) such that B(X) can be connected to the identity matriz and

£1(X) 1
F(X) 0
sy | =]
ful(X) 0
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Proof. Since any elementary matrix can be connected to the identity matrix [cf. 2.6.4],
the result follows from 2.1.10, if n > d 4+ 3. So we assume that n = d + 2. By Lemma
2.1.9, we can find o(X) € E,,(A[X]) such that

f1(X) g1(X)

f2(X) g2(X)
o(X) . = .

fn(X) gn(.X)

and ht(g1(X),...,9;(X)) > i for 1 <i < n. Since ht(g1(X),...,gn-1(X)) > n—1=
d+1, it follows from Lemma 2.8.3 that the ideal (g1(X), ..., gn—1(X)) contains a monic
polynomial, say h(X). By adding a large power of h(X) to g,(X), we may assume that
gn is monic. Now, by adding a large power of g,(X) to ¢1(X), we may assume that
91(X) is monic. Hence by Theorem 2.7.2, there exists a matrix §(X,T) € GL,(A(X,T)
such that 6(X,0) = I, and

g1(X) 1

92(X) 0
(X, 1) . =

gn(X) 0

Now, o(X) is elementary and hence can be connected to the identity matrix. Hence
there exists ¢'(X,T) € GL,(A[X,T]) such that ¢'(X,0) = I, and §(X,1) = 0(X). Let
a(X,T)=46X,T)8(X,T). Then «(X,0) = I,, and

H1(X) 1
f2(X) 0
a(X,1) . =1 .
falX) 0
Setting B(X) = (X, 1), the result follows. O

3 On Forster’s Conjecture

The aim of this section is to give a proof of Forster’s conjecture 3.3.3, viz.
Theorem. Let k be a field and p C k[Xy,...,X,] be a prime ideal such that
E[X1,...,Xn]/p is regular. Then p is generated by n elements.
The proof we give is based on a theorem of Satya Mandal 3.3.2. We also use the
theorem of Mandal to prove some addition principles (see 3.4).

3.1 Conditions for Efficient Generation of Ideals

Let A be aring and M an A-module. Then we define p(M) to be the minimum number
of elements of M needed to generate M.

Definition 3.1.1 An ideal I of a ring A is said to be efficiently generated if u(I) =
w1/ 12).
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In this section we give necessary conditions for an ideal I to be efficiently generated.
The results proved in this section are in a certain sense the analogues of the results proved
in Sections 2.1 and 2.2.

Theorem 3.1.2 Let (A, m) be a Noetherian local ring and I C A be an ideal. Suppose
there exist f1, fa,..., fn in I such that their images generate I/I?, then I is generated

by flyf?a“'vfn'

Proof. Since m is the unique maximal ideal of A, I C m. Since A is Noetherian, I is

finitely generated. Let J be the ideal of A generated by fi,..., fn. Then I = J + I2.

Using Corollary 1.3.5, I = J. This proves the lemma. O
The following lemma is based on a result of Kronecker (cf.[14]).

Lemma 3.1.3 Let A be a Noetherian ring with dim(A) = d and I C A be an ideal.
Then there exist f1, fa, ..., fax1 € I such that V(I) =V (f1, fo,. .., fa+1)-

Proof. We split the proof into six steps.
Step 1. If T is contained in every minimal prime ideal of A, then V(I) = Spec(A), and

we may choose f1 = fo == fg4r1 =0.
Step 2. We may therefore assume that [ is not contained in every minimal prime ideal
of A. Let p1,p2,...,p, be the minimal prime ideals of A which do not contain I. Since

I ¢ p;forl<i<r, byl.2.1, it follows that I ¢ U/_,p,. Hence we can choose f1 € I
such that f1 ¢ Ul_;p;.
Step 3. Let q1,42,...,qs € Spec(A) be the minimal prime ideals containing (f1) but
not containing I. If no such prime ideals exist we choose fo = 0. Otherwise, as in Step
2, we choose fy € I such that fo ¢ Ui_;q;.
Step 4. Having chosen fi, fa,...,f; € I for 1 < j < d, in the above way, let
p1,p5,...,p] € Spec(A) be the minimal prime ideals of A containing (f1, f2,..., f;)
but not containing /. If no such prime ideals exist, we choose f;+1 = 0 and f; = 0 for
j+1<i<d+1. Otherwise, we choose f;41 € I such that fj11 ¢ Uizlp;.
Step 5. We claim that if p € Spec(A), p D (f1, fo,..., fi) and p 2 I, then ht(p) > i for
1 <i<d+1. We prove the claim by induction on i. The case i = 1, follows from Step 2.
Assume, by induction, the assertion of the claim holds for ¢ = j. Suppose p € Spec(A),
pD <f1,f2, . .,fj+1>, p 2 I. We will prove that ht(p) > j + 1. Assume that ht(p) < j.
We will derive a contradiction.

Since p D <f1, fo,oo ey fj> and p 2 I, it follows from the induction hypothesis that
ht(p) > j. By assumption, we have ht(p) < j. It therefore follows that ht(p) = j.

We next prove that p is minimal over <f1, fo,.o o, fj>. Let p’ € Spec(A) be such that
p 20 D (fi,fas-.., f;5). Since p 2 I,p’ 2 I. This implies that ht(p’) > j by the
induction hypothesis. Hence ht(p) > j 4+ 1, which is a contradiction. Therefore, p is
minimal over <f1,f2, . .,fj>. Since p 2 I, it follows from Step 4, that f;j11 ¢ p. This
contradicts the assumption that p D <f1, fo, oo, fj+1>. Hence the claim.
Step 6. By Step 5, if p € Spec(A) is such that p D <f1,f2,...,fd+1> and p 2 I,
then ht(p) > d + 1. Since dim(A4) = d, it follows that any prime ideal containing
<f1, fa, .. .,fd+1> has to contain I. Therefore, V(f1, fa,..., fa+1) C V(I). On the
other hand {f1, fa,..., fa41) C I, so that V(I) C V(f1, f2,. .., fat1). Therefore, V(I) =
V(f1, for - fag1)- 0

We can ask, what additional hypothesis are necessary to conclude that I is generated
by d+ 1 elements. If I is generated by d + 1 elements, then so is I/I?. It turns out that
this additional condition is sufficient to ensure that I is generated by d + 1 elements.

We prove the following theorem due to N. Mohan Kumar, ¢f. [23], Lemma 4.
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Theorem 3.1.4 Let A be Noetherian ring with dim(A) = d, and I C A be an ideal such
that I/1% is generated by d + 1 elements. Then I is generated by d + 1 elements.

Before proving Theorem 3.1.4, we prove the following theorem.

Theorem 3.1.5 Let A be a Noetherian ring and I be an ideal of A. Then I will be
generated by n elements f1, fa,..., fn provided fi, fo,..., fn generate I modulo I? and

V(f1, f2,- s fu) = V).

To prove this Theorem we need the following lemmas.

Lemma 3.1.6 Let A be a Noetherian ring and I C A be an ideal such that I = I?. Then
I is generated by an idempotent element.

Proof. Since A is Noetherian, [ is finitely generated. By 1.3.3, there exists a € I such
that (1—a)l = 0. We claim that I = (a). Clearly, (a) C I. Let b € I. Then (1—a)b= 0.
Since ab € <a>, be <a>. Hence the claim. Now, since (1 —a)a = 0, a = a®. Hence a is
an idempotent element. O

Corollary 3.1.7 Let A be a Noetherian ring and I C A be an ideal. Suppose I =

<a1,a2,...,an> + 12 Then I = <a1,a2,...,an,e>, where e(1 —e) € <a1,a2,...,an>,

Proof. Let aj,as,...,a, € I be such that their images generate I/I%>. Then [ =
<a1, as, ..., an> +I2. Suppose I = I/<a1, az, ... ,an>, where bar denotes reduction mod-
ulo <a1,a2,...,an>. Then I = I?. By Lemma 3.1.6, [ = <é> for some idempotent
element &€ € I. Let e € I be any preimage of & Then I = <a1,a2,...,an,e> and
e(l1—e) € (ar,az,...,an). O

Lemma 3.1.8 Let A be a ring and e € A be an idempotent element. Then
(e) N (1 —e)y={0}.

Proof. Let z € (e) N (1 —e). Then z = Xe = u(1 — ¢) for some A, € A. This implies
that Ae? = pe(1 —e). Since e = €2, it follows that = Ae = A\e? = pe(1 —e) = 0. O

Lemma 3.1.9 (c¢f [5], Lemma 2.11) Let A be a Noetherian ring and J C A be an ideal.
Let J, C J and Jo C J? be two ideals of A such that J, + Jo = J. Then J = J, + <e>
for some e € Jy and J; = JNJ', where Jy + J = A.

Proof. We claim that (J/J1)? = J/J;. Clearly, (J/J1)?> C J/J;. Conversely, we know
that (J/J1)? = (J2+J1)/Ji. But, J2+J; D Jo+J; D J implying that (J/J1)? D J/J;.
Hence the claim.

Let bar denote reduction modulo J;. By Lemma 3.1.6, it follows that J/J; = <E>
for some idempotent element € € J/.J;. Since the map J, — J/.J; is surjective, we may
assume that e € Jo. Let J' = J; + <1 —e>. Then e € Jy implies 1 = e+ (1—¢) € o+ J',
showing that Jo + J' = A.

Lastly to show that J NJ' = Jy. It suffices to show that Jn7T = <6> But, this is
clear by 3.1.8, since J = () and J’ = (I —€). Hence the lemma follows. O

Lemma 3.1.10 Let A be a ring, M an A-module and N be an A-submodule of M.
Then following three statements are equivalent. (i) M = N. (ii) M, = N, for every
p € Spec(A). (i91) My = Np for every m € Max(A).
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Proof. Let us consider the A-module L = M/N. Then L =0« M = N and L, =
0 < M, = N, (see 1.1.16). Therefore, it suffices to show the equivalence of the following
three statements. (i) M = 0. (ii) M, = 0 for every p € Spec(A). (ili) My = 0 for
every m € Max(A).

Clearly, (i) = (i) = (#i9). Now, we show that (iii) = (i). Let (iii) be true and
suppose M # 0. Then there exists © € M such that z # 0. If I = ann(z) = {\ €
A|Ax = 0}, then I # A, as @ # 0. Thus, I is contained in some maximal ideal m of
A. Now, { € My = 0 implying that there exists s € A —m such that sz = 0. But
s € ann(z) = I C m. This is a contradiction, hence (ii3) = (). O
Proof of Theorem 3.1.5.

Proof 1. Let J = <f1,f2, .. .,fn>. In order to check that J = I, by Lemma 3.1.10, it
is enough to check that I, = J, for all p € Spec(A). If p 2 J, then p 2 I and hence
I, = J, = Ay, If p D J, then by hypothesis p D I. Since f1, fo, ..., fn generate I modulo
I?, and A, is local, by Lemma 3.1.2, I, = J,. This proves the lemma. a
Proof 2. Since <f1,f2, . ,fn> + 1?2 = I, by Lemma 3.1.9, <f1,f2, . ,fn> =INnI for
some ideal I’ of A such that I + I’ = A. It follows that no prime ideal of A can contain
both I and I'. We claim that I’ = A. Take p € Spec(A) such that p D I’. Then
pD <f1, fo,oot, fn> and hence by hypothesis p D I. This is a contradiction. Hence the

claim. Therefore, <f1, fo, e, fn> =1 O
We now proceed to the proof of Theorem 3.1.4. Its proof is similar to that of
Lemma 3.1.3. The idea of the proof is to start with a set of generators g1, g2,..., gd+1

of T modulo I? and modify them by elements of 12 to obtain fi, fay .-y fat1, so that
V(f1, f2,-- -, far1) = V(I) and appeal to 3.1.5.

Proof of Theorem 3.1.4. We split the proof into five steps.

Step 1. If I is contained in every minimal prime ideal of A, then V(I) = Spec(A).
Therefore, V (g1, g2, - - -, ga+1) = Spec(A) = V(I) and by 3.1.5, I = (g1, 92, -, ga+1)-
Step 2. We may therefore assume that [ is not contained in every minimal prime ideal
of A. Let p1,...,p, be the minimal prime ideals of A which do not contain I. Since
I & p;, I ¢ p; (1 <i<r). We choose y; € I? such that y; ¢ U_;p,. Suppose that
grep;forl <i<landg; ¢p;forl+1<i<r. Wechoosea; € Mi—yy1Pi — Uizlpi.
The element fi; = g1 + a1y1 ¢ Ul_p; and f1 = g1 modulo I2.

Step 3. Having chosen fi, f2,..., f; we choose fj;1 in the following manner. Let
p1,p5 ..., pl, be the minimal prime ideals containing (f1, f2, ..., f;) and not containing
1. If no such prime ideals exist, we choose f; = g; for alli > j+1. Otherwise, as in Step 2,
we choose yj11 € 12, yj41 ¢ U™ p;. Suppose g;j+1 € pi’ for 1 <i < s and gj+1 ¢ p;’ for
s+1 <i < m. We choose a;1 € N2, p;—U;_1p;. The element fj11 = gj11+aj11y511
satisfies the property that f;j1 ¢ U p} and fj11 = g;+1 modulo I

Step 4. As in 3.1.3, it follows that if p € Spec(A), p D <f1,f2, .. .,fi> and p 2 I, then
ht(p) >, 1 <i<d+1.

Step 5. By Step 4, if p € Spec(A), p O (f1, fo, ..., fa+1) and p 2 I, then ht(p) > d + 1.
Since dim(A) = d, it follows that any prime ideal containing <f1, fo, e, fd+1> contains 1.
Therefore, V (f1, fa, ..., fax1) = V(I). Further, since f; = g; mod I? and g1, g2, ..., gd+1
generate I modulo I2, it follows from 3.1.5 that fi, fa,..., fayr1 generate I. This com-
pletes the proof of the theorem. 0.

Theorem 3.1.11 Let A be a Noetherian ring with dim(A) = d, I C A an ideal of A
such that I/I? is generated by n elements, where n > d + 1. Then I is generated by n
elements.
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Proof. We choose g¢1,gs2,...,9, € I which generate I modulo I%2. As in the proof
of Theorem 3.1.4, we choose fi, fa,..., fas1 € I such that f; = g; modulo I? for i =
1,2,...,d+1and V(I) = V(f1, f2, ..., far1). Since g; = f; modulo I? and g1, 92, ..., 9n

generate I modulo I2, it follows that fi,..., fat1,gd+2,--.,gn generate I modulo I2.
Since V(I) = V(f1,..., fat1), we have V(I) = V(f1,..., fa+1,9d+2, - -, 9n). Thus, by
Lemma 3.1.5, f1,..., fa+1,9d+2, - - ., gn generate I. This proves the theorem. o

The following lemma is special case of a result of Eisenbud-Evans. For details see
([8], Theorem A).

Lemma 3.1.12 Let A be a Noetherian ring and [a1,...,an,a] € A"TY. Then there
exists [b1,...,bp] € A™ such that if I = <a1 +abyi,...,an + abn>, then ht(I,) > n, i.e. if
p € Spec(A), I Cp and a & p, then ht(p) > n.

Proof. If a belongs to every minimal prime ideal of A, then a belongs to every prime
ideal of A and there is nothing to prove.

Let p1,p2,...,p, be the minimal prime ideals of A which do not contain a. Since
a & pi, (a1,a) € p;. Hence by Lemma 1.2.1, (ay,a) € Ul_p,;. Using 1.2.2, we choose
b1 € A such that a1 +b1a ¢ Ul_,p;. Having chosen by, ba, . .., by for k < n, we choose by11
as follows. Suppose that qi, gz, ..., qs € Spec(A) are the minimal prime ideals containing
the ideal <a1 + bia,...,ar + bka> but a ¢ q;, 1 <1i < s. If no such prime ideal with the
above property exists, we choose byy1 = 0 and b; = 0 for ¢ > k+ 1. Otherwise, since
a ¢ q;, <ak+1,a> ¢ U_,q;. We choose b1 € A such that agy1 + bpria & Ui q;. It is

easy to check that the elements by, ...,b, satisfy the required property. O
Lemma 3.1.13 Let A be a Noetherian ring and I C A be an ideal of A. If f1, fo, ..., fn €
I generate I modulo I? and every mazimal ideal containing <f1, fa,.. .,fn> contains 1

then f1, fa,..., fn generate I.

Proof. The proof is along the lines of 3.1.5. o
The next two results are in [26].

Theorem 3.1.14 Let A be a Noetherian semilocal ring, I C A an ideal. If I/1? gener-
ated by n elements, then I generated by n elements.

Proof. Let ai,...,a, € I generate I/I%. Then <a1, .. .,an> + I? = I. Suppose every
maximal ideal containing <a1, ey an> contains /. Then by Lemma 3.1.13, [ is generated
by the n elements a1, ..., a,. Assume otherwise. Since A is semilocal, it has only finitely
many maximal ideals. Let my,...,m; be the maximal ideals of A such that m; 2 I,
m; D <a1, e ,an>. We are going to change a; so that [ = 0. Enumerating all the
maximal ideals of A and classifying them, it follows that A has the following three types
of maximal ideals. (i)a; € mi,...,m}, where m; D I. (ii) a1 € my,...,m;, where
m; A I (i) a; ¢ my,...,m/. It is clear that I>Nmj N---Nm, Nm{N---Nm) ¢ m; for
alli=1,2,...,1.

We choose, b € I> Nm) N---Nm, Nm{ N---Nm/ such that b ¢ U_ m;. Let
a} = aj; +b. Since b € 12, <a’1,a2, .. .,an> + 1?2 = I. We shall show that any maximal
ideal of A containing the ideal <a’1, as, ... ,an> contains I. Let m be a maximal ideal of
A such that m D <a’1, as,... ,an>. Then a} = a; +b € m, where b ¢ U._ m,.

If m = m; for some i = 1,2,...,1, then a} € m;. But, since a; € m;, b € m;, which
is not true. Further, if m = m;.' , then m contains a} as well as b, so that it contains a;.
But m’ does not contain a;. This implies, m # m} for j =1,2,...,¢.

Therefore, m = m/. for some r € {1,2,...,s}. This implies that m contains I. Hence
the assertion. Using Lemma 3.1.13, it follows that I = <a’1, as, ..., an>.

O
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As a direct consequence of Theorem 3.1.14, we have the following theorem.

Theorem 3.1.15 Let A be a Noetherian local ring. Let I C A[X] be an ideal containing
a monic polynomial. Suppose 1/I? is generated by n elements. Then I is generated by n
elements.

Proof. Let f(X) € I be a monic polynomial and suppose {f1(X),..., fu(X))+1?=1I.
Replacing f1 by f1 + fP for sufficiently large p > 0 we may assume that f; is monic.
Now, the theorem follows by applying 3.1.14 to the ring A[X]/(f1(X)). O

The next theorem 3.1.18 generalises 3.1.11 and 3.1.14. Before proving the theorem
we prove the following lemma.

Lemma 3.1.16 Let A be a Noetherian ring, J C A an ideal. Suppose J = <b1, ceay by, s>,

where s € J2. Then there exists ci, . .., cn in A such that if d; = bi+sc; then <d1, ey dn> =
JNJ', where J' + (s) = A and ht(J') > n. In particular, if n > dim(A) + 1 then

J= <d1,...,dn>.

Proof. Using Lemma 3.1.12, we choose ¢; € A, 1 < i < n, such that if d; = b; + sc¢;, then
the ideal <d1, .. ,dn> satisfies the property: If p € Spec(A) is such that p D <d1, ... ,dn>,
s ¢ p then ht(p) > n. Now, since <d1, ... ,dn,s> = Jand s € J%, by 3.1.9, <d1, .. .,dn> =
JNJ', where J' + (s) = A. We show that ht(J’) > n. Suppose p € Spec(A), p D J'.
Then p D <d1,...,dn>. Since J + J' = A, p 2 J and hence s ¢ p. It follows that
ht(p) > n. This implies that ht(J’) > n. Hence the lemma follows. O

Remark 3.1.17 Using 3.1.16 and 3.1.9, we can get another proof of 3.1.11.

Theorem 3.1.18 Let A be a Noetherian ring, I C A an ideal. Suppose I/I? is generated
by n elements, where n > dim (A/Jac(A)) + 1. Then I is generated by n elements.

Proof. Let ai,...,a, generate I modulo I2. Then <a1, ceey an>—|—I2 = I. Using 3.1.9, we
choose ¢ € I? such that <a1, e, O, c> = I. Let B = A/Jac(A) and bar denote reduction
modulo Jac(A). Then
_ _ . = I+Jac(4)
L Ene) =T =12
(@, @) Jac(A)

Using Lemma 3.1.16 we choose [i7, . . . , i, € B such that <a_1—|—W, e ,@—i—W) = TDTI,
where ht(T/) >nand [ +I' = B. But, as n > dim (4/Jac(A)), T = B. This implies,
<a_1—|—m, . ,@—l—m) = T. Hence <a1 + p1c, .. Ay +unc> +Jac(A) = I+ Jac(A). Let
J = <a1 +pic, ... an+ unc>. Since ¢ € I?, the ideal J satisfies the property, J + 12 = I.
We claim that every maximal ideal of A containing J has to contain I. Let m be a
maximal ideal of A such that m D J. Since m D Jac(A), m D J + Jac(A4) and hence
m D I. Therefore, by Lemma 3.1.13, J = I. Hence [ is generated by n elements. This
proves the theorem. O

3.2 Some Patching Lemmas

Lemma 3.2.1 Let A be a domain, I an ideal of A. Let a,c € A be such that <a, c> = A.
Then
— 1,

I
I.—— 1,
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s a pullback diagram. This means that if two elements x € I,y € I, are equal in I,.,
then there exists a unique z € I such that ¥ = x in I, and § =y in L.

Proof. Let z = a% €I, and y = % € I, be such that C% = c% in Iy, (where b,d € I).
Hence bc® = da” in A. Since <a,c = A, <ar,cs> = A. We choose A\, u € A such that
Aa"+puc® = 1. Let z = Ao+pud. Then a”z = a" \b+a"ud = a" Ab+c®ub = b(a"\+cu) = b

and ¢®z = c*Ab + ¢*pud = a"Ad + c*pd = d(a” X + ¢*p) = d. Hence we have § = a—br in I,

and § = (i in I.. The uniqueness of z can be proved easily. O

Remark 3.2.2 The element z € I defined in 3.2.1 is called the pullback of (z,y).

Lemma 3.2.3 Let A be a domain, I an ideal of A. Let a,c € A be elements such that
<a,c> = A. Suppose I, = <x1, . ,xn>, I. = <y1, e ,yn> and x; = y; in I,.. Suppose
zi € I is the pullback of (x;,y:). Then I = (z1,...,2n).

Proof. Let I, = <ab,}1,--- ,ab:;,> and I, = <(d—11, ,C(i’;>, where b;,d; € I, 1 < i <n.
Suppose ab,:'i = cdé in I,. for all i. By 3.2.1, there exists unique z; € I such that
zi = :7 in I, and z; = Cdé in I.. We claim I = <z1,...,zn>. Let + € I. Then

r=>" Ao b S A ooand z = S s di S Az Let v = max{r;},
c’i

=1 o7 ari =1 =1 a7 e
and s” = max{s}" ;. Let r = max(r”,s”). Then we have a"z = Y . | N;z; and
'z =31 | Wiz, where Nj, i € A. Since (a”,c") = A, there exists t1,t; € A such that
t1a” + toc” = 1. Therefore, x = z(t1a” + toc”) = t1a"x + toc"x = > (1N, + top) 2.
This proves the claim. O

Lemma 3.2.4 Let A be domain, I an ideal of A. Let a,c € A be such that <a,c> =A.
Suppose there exist two surjections f : A — I, viz. e; — x; and g : ALY — I, viz. e, — y;
where x; € In,y; € I, 1 <i < n. If there exists 0 € GL,(Aqc) such that fa =g (where
f: A% — I and g A%, — I, are induced by f and g respectively) and further that
o = T17T2, where 11 € GL,(A,) and 7o € GLy,(A.), then I is generated by n elements.

Proof. Case 1. Suppose o = I, i.e. ]?: g. Then in I, x; = f(ei) = g(e;) = yi.
Therefore, by Lemma 3.2.3, I is generated by n elements.

Case 2. (The general case) We are given that ¢ = 7179, where 71 € GL,(A,) and
T € GL,(A.). Consider the following diagram.

Ay A 1,
! g
Ar 2 an 2,

By hypothesis, fa =g, so that fﬁ = g7, ! Therefore, we have the following commutative
diagram:

Therefore, Case 2, reduces to the Case 1. Hence the lemma follows. O
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3.3 First Proof of Forster’s Conjecture

The aim of this section is to give a proof of Forster’s conjecture 3.3.3. We deduce it
from a theorem of Mandal (See 3.3.2).

Lemma 3.3.1 Let A be a ring and I an ideal of A[X] containing a monic polynomial.
Let J be an ideal of A such that I + J[X] = A[X]. Then (INA)+J=A.

Proof. Suppose that (I N A)+ J # A. Then there exists a maximal ideal m of A such
that (INA)+ J C m. Thus, m is a maximal ideal of A/I N A. Since I contains a monic
polynomial, the extension R = A/I N A — A[X]/I = S is integral. Therefore, there
exists a maximal ideal 9 of A[X] containing I such that the maximal ideal 90 of A[X]/I
satisfies m = MM N A. Since J C m, we have I + J[X] C M, a contradiction. Hence the
lemma follows. O

The following theorem of Mandal (¢f. [18]) generalises a result of N. Mohan Kumar
(cf. [23], pg. 161). We follow [18] (Theorem 1.2), [5] (Prop. 3.3) and [23].

Theorem 3.3.2 Let A be a Noetherian domain, I an ideal of A[X] containing a monic

, , . [ A[X]
polynomial. Suppose that I/I% is generated by n elements, where n > dim (T) + 2.

Then I is generated by n elements.

Proof. Let by,...,b, € I generate I modulo I?. By assumption I contains a monic
polynomial f(X). The elements by + fP,ba,...,b, also generate I modulo I? if p > 1.
Since f(X) is a monic polynomial, for sufficiently large p the element a; = b; + fP
is monic. Let J = I N A. Since I contains monic polynomial, the extension A/J —
A[X]/I is integral. Since the ideal (J?[X], a1) contains a monic polynomial viz. ay, the
extension A/J? — A[X]/(J?[X],a1) is integral (the inclusion following from Lemma
1.9.25). Therefore, by 1.9.18, we have

dim (g) = dim (?) = dim (%) = dim <%> .

Let B = ﬁ, and bar denote the reduction modulo <J2 [X],a1>. Then n — 1
;a1
A[X])
T

elements bo, . .., b, generate I modulo 7. Since n > dim ( + 2, we have

n—lEdim(@)—f—Z—l:dim(g)+1:dim(B)—|—1.

Therefore, using Theorem 3.1.11, it follows that I is generated by n — 1 elements, say
a2,...,0,. Therefore, we have <a1,a2,...,an> + J2[X] = I. Since J?[X] C I?, by
Lemma 3.1.9, there exists an ideal I’ of A[X] such that <a1, as,. .. ,an> = INJTI, where
I' + J?[X] = A[X]. Since ay,as,...,a, generate I N I’, I’ contains a monic polynomial
viz. a;. Hence it follows from Lemma 3.3.1 that I’ N A + J? = A. Therefore, I' N A
contains an element of the form 1+ j for some j € J. This implies that I7, ; = A14;[X].
Since INT' = <a1,a2, . .,an>, we have I14; = <a1,a2, . .,an>A1+j[X]. Therefore, we
have surjection f : A14;[X]|" — Li4; viz. e; — a;(X).

On the other hand j € J = I N A implying that I; = A;[X] and hence we have a
surjection g : A;[X]" — I viz. e; — 1,e; — 0 for i > 1.
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Since a1(X),...,an(X) generate ;145 = Aja4j)[X], the row [a1(X),...,a,(X)] is
unimodular in A4 [X]. Since a;(X) is monic in X, by Theorem 2.7.2, there exists a
matrix a(X,T) € GLn(Aj14,)[X,T]) such that o(X,0) = I,, and

al(X) 1
GQ(X) 0

a(X,1) . =1 . 1. (12)
an(.X) O

Let C = Aj14;)[X] and 3(T) = a(X,T). Then B(T') € GL,(C[T]) and 3(0) = I,. By
Lemma 2.6.1, 3(T) = (X, T) = 71(X, T)72(X, T) for some 71 (X, T) € GL,,(A14;[X,T])
and 72(X,T) € GL,(A;[X,T]). Putting T' = 1 we see that o(X) = «(X, 1) splits. Now,
by (12), the following diagram is commutative:

o F
Ajap X" —— Lja+j)

o]

Ajaep X L= Ly

Id

o~

where f,ﬁ are surjections induced by f and g, i.e. § = fo(X), where o(X) =
(X, D)71a(X, 1), m(X,1) € GL,(A14,[X]), 72(X,1) € GL,(A;[X]) Therefore, by 3.2.4,
I is generated by n elements. This completes the proof. O.

Corollary 3.3.3 (cf [23], [34]) Let k be a field and p C k[X1,...,X,] be a prime ideal
such that k[X1,...,X,]/p is reqular. Then p is generated by n elements.

Proof. Let p C k[X3,...,X,] be such that k[X1,...,X,]/p is regular. If ht(p) = 1,
then p is principal and there is nothing to prove. So, we assume that ht(p) > 2. Using
automorphism of k[X1,...,X,], ¢f 1.10.3, we may assume that p contains a monic
polynomial in X,,. Let A = k[X1,...,X,—1] and X = X,,. By the Forster-Swan theorem,
(cf. [9], [41]) p/p? is generated by n elements. Since ht(p) > 2, dim (A[X]/p) < n — 2.
Therefore, n > dim (A[X]/p) + 2. Now, by Mandal’s theorem, p is generated by n
elements. O

3.4 On some Addition Principles

The aim of this section is to prove some addition principles (see 3.4.8, 3.4.9). We begin
this section with the following theorem.

Theorem 3.4.1 Let k be a field and m be a mazimal ideal of k[X1,...,X,]. Then m is
generated by n elements.

Proof. We prove the theorem by induction on number of variables n. Using 1.10.2, we
get ht(m) = n. Let A = k[X1,...,X,—1]. Then dim(A[X,]) = n = ht(m). Hence by
Lemma 1.8.3, ht(mNA) > n—1. But, as dim(A4) = n—1, it follows that ht(mNA) =n—1.
Therefore, m N A is a maximal ideal of A. Let mN A = my. Then

AlX,] . A
m[X,] mnA

kl [Xn] = [Xn]a
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where k1 = A/m; is a field. Let bar denote reduction modulo m;[X,,]. Since k;[X,] is a

PID, m is generated by a single element. By induction it follows that m; is generated by

(n — 1) elements. Therefore, m is generated by n elements. O
Similarly, one can prove the following corollary.

Corollary 3.4.2 Let k be a field and mq,...,m, be a mazimal ideals of k[X1, ..., Xn].
Let I =myN---Nm,. Then I is generated by n elements.

Lemma 3.4.3 (Chinese Remainder Theorem) Let A be a ring, I, J ideals of A such
that I +J =A. Letn: A— A/I® A/J be the homomorphism (of A-modules) defined
by n(a) = (@,a). Then n is surjective and ker(n) =1NJ.

Proof. It is clear that ker(n) =INJ. Since [ + J=A, 1l =z +y, wherex € I,y € J.
Let (7, 5) € A/I & A/J. Since rx +ry = r, n(ry) = (7,0). Similarly, n(sz) = (0,3).
Hence n(ry + sz) = (7, 3), showing that n is surjective. O

Lemma 3.4.4 Let A be a ring, J1, Jo be ideals of A such that J, + Jo = A. Let
J=J1NJy. Then J/J* =2 J1/J? & Jo/J3 as A-modules.

Proof. We define an A-linear map f : J — J1/JZ®J2/J3 by & — (Z,7). Since J1+Jo =
A, we have JZ + J7 = A. We show that f is surjective. Let (7,5) € J;/JZ @ Jo/J2. We
choose = € JZ, y € J3 such that z +y = 1. Hence rz + ry = r. We have f(ry) = (7,0)
and similarly, f(sxz) = (0,5). Therefore, f(ry + sz) = (7,5).

Note that surjectivity of f can also be proved as follows. We consider as above an
element (7,0) € J1/J?® Ja/J3. We want an element x € J; NJo such that (Z,7) = (7,0),
i.e. z—1r € J? and x € J3. We will be done if we show that (J; N JaNJ2)+ JZ = Jy, i.e.
it is enough to show that J12 +JiN J22 = J;. Now, multiplying the equation J; + J22 =A
by J1 we get JZ + J1J2 = J;. Hence the assertion follows. Similarly, we can show that
(0,3) is in the image of f. Hence f is surjective.

Since J? + J3 = A, J2NJ2 = J2JZ and hence ker(f) = JENJ2 = J2J3 = (J1.J2)? =
(J1 N J2)% = J%. Therefore, J/J? = J;/J? @® J2/J3. Hence the lemma follows. O

Lemma 3.4.5 Let A be a ring, 11, Is ideals of A such that Iy + 15 = A. Let I = I N 5.
Suppose that both I /I and I2/13 are generated by n elements. Then I/I? is generated
by n elements.

Proof. Let g1,...,9, € I1 and fi,...,f, € I» be generators of I;/I? and Iy/I2
respectively. We claim that (g;, f;) generate I;/I? @ Iy/I2. Let T € I/I?. Then
T = Ele Aigi+cforsomec € I3, where \; € A, 1 <i <n. Since [1+1I> = A, \; = p;+v;,
where p; € I and v; € Ir. Therefore, x = > | (pi + vi)gi + ¢ = Y i vigi + d, where
d € I?. Since v; f; = 0 in I /12 we have, (%,0) = >, vi(7i, f:)-

A similar computation works for an element of the form (0,%) for ¥ € Iy/I3. Hence
it follows that the elements (g3, f;) generate I;/I? @ I/I3. Now, from Lemma 3.4.4, it
follows that I/I? is generated by n elements. O

Remark 3.4.6 The motivation for the above proof is the following : The surjections
(A/I)" — I/I? and (A/I)" — Iy/I3, given by g; and f; induce via the Chinese
remainder theorem, a surjection (A/I)" = (A/L)" & (A/LL)" - L/I} ® I1/I3 i.e. we
get n elements which generate I, /I @ I5/I3.

The following theorem is in ([36], Theorem 4). We follow ([6], Prop. 3.1).
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Theorem 3.4.7 Let A be a Noetherian domain with dim(A) = d. Let Jy and Jo be two
ideals of A of height n such that Jy + Jo = A. Assume that J; and Jo are both generated
by n elements. Assume further that n > #, Then Jy N Jy is generated by n elements.

Proof 1. Suppose J; = <a1,...,an> and Jo = <b1...,bn>. Since J; + Jo = A, the
row [@g,...,Gp] is unimodular in A/Js, where bar denotes reduction modulo J5. Since
ht(J) = n, dim (A4/J>) < d—n. By hypothesis, n > 42 = 2n > d+3 = n > d-—n+3 =
n > dim (A/Jz) + 2. Therefore, by 2.1.10, there exists a matrix a € F,, (A/J3) such that

ar 1

az 0
« =

[y 0

By Lemma 2.1.13, there exists a lift, say o of « in E,,(A). Hence

ay ay 1
al, as 0
=0 . =| . modulo J; (13)
al, an, 0
Hence Jy = (a},...,a},), where aj = 1 modulo J; and a = 0 modulo J; for i > 1.

Applying Lemma 3.1.12, we choose A1,...,A\,—1 € A such that the ideal
jl = <a“ll + )\10“;17 ceey aiz—l + )‘nflaiz>

satisfies the property that if p D j1~ and a;, ¢ p, then ht(p) >n — 1.

On the other hand, if p D J; and a, € Ji, then p D (af,...,a,) and since
ht{al,...,al,) = ht(J1) = n, we have ht(p) > n.

Let a = a} + Nal,, 1 < i < n—1, a/ = d,,. By the above results, ht(J;) =

ht(ay,...,al_;) > n— 1. Since a}, = 0 modulo Jo, from equation (13) we have

(af,...;all_1) = (1,0,...,0) modulo Js. (14)

Thus, <a’1', oa > +Jo = A, ie. Ji +Jo = A. Let bar denote the reduction modulo

» Um—1

Jy. Since Jy + Jo = A, [br,...,bn] € U, (A/J]). Asht(J)) >n— 1,
dim (A/Jl) <d—(n—1). (15)

Since n > % =n>d-n+3=n> d—(n—1)+2:>n2dim(A/j1)+2. By
Theorem 2.1.10, there exists g € E, (A/jl) such that

b T
by 0
/8 =
B 0
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Let 7 € E,(A) be the lift of 5. Then

by by 1
A by 0 )
=7 . =| . modulo Jj. (16)
b, bn 0

Hence J; = (b} ..., b,), where b} = 1 modulo Jy and b = 0 modulo J; for i > 1. Using
Lemma 3.1.12, we choose pi1, ..., tn_1 € A such that Jy = <b’1+,u1b§l, sl —l—,un_1b§l>
satisfies the property that if p O Jo and b, ¢ p, then ht(p) > n — 1. As before, if p D Jy
and b}, € Jy, then ht(p) > n. Let b = bj + by, 1 < i < n—1,b; = b,. Then
ht(J2) = ht(bY,...,b/_;) > n — 1. Since b}, = 0 modulo J; from equation (16), we have

(by,...,0"_)=(1,0,...,0) modulo .J;. (17)

Therefore, we have <b’1',...,bZ_1> +.J, = A. Hence J, = <a'1’,...,aZ> and J, =
(b, ...,0) where (af,...,all_y) + (bf,....00_) = A, ht(af,....all_}) > n —1,
and ht(b{,...,b,_;) > n — 1. Consider the ideals Iy = (af,...,al,_;,X — al]) and
L= (bY,...,b0_, X —bl) of A[X] and assume I = I;NI. In view of (1), [y +1, = A[X].
Now we have a natural map ¢ : A — A[X]/I;. Since a!! — X, ¢ is surjective. By 1.9.25,

ker(¢) = (af,...,al,_;) and hence

A A A[X]

= = ~ 18
Juo {dl o al ) I (18)
By (15), dim (A[X]/I1) < d— (n —1). Similarly,
A A AlX
= ~ LX] (19)

AR N N R

and dim (A[X]/Iz) < d— (n—1). Lemma 3.4.4 gives an isomorphism of A[X]-modules
I/1? ~ I /I} & I5/I3. Since I /I and Iy /13 are generated by n elements, it follows from
Lemma 3.4.5 that I/I? is generated by n elements. Since I; + Iy = A[X], no prime ideal
of A[X] contains both I; and I5. Therefore,

dim (g) — Sup (dim#f(],dim %’(U

Using equations (18) and (19), we have dim (A[X]/I) < d — (n — 1). By hypothesis,
n > d—'53 = n > dim (@) + 2. Since I/I2 is generated by n elements, it follows from
Theorem 3.3.2 that [ is generated by n elements. Putting X = 0, we see that J = J1NJ;

is generated by n elements. This completes the proof. O

Proof 2. Asin the first proof assume that we have chosen generators af, ..., al’ of J; and
by,...,b) of Jp such that (af,...,all_y)+ (by,...,bll_ ) = A. Let g = (af,....dl_y)
and Jp = (bY,...,bl!_1). Then there exist elements ¢ € Jy and d € J, such that c+d = 1.
Now, (Ji N Ja)e = (bY,..., b _y,bp), and (Ji N J2)a = (af,...,a_,ay), This gives
surjections, f : A% — (J1 N J2)q (sending e; — a) and g : A — (J1 N J2). (sending
e; — b}). By the choice of ¢, the row [af,...,al_;] € Um,_1(A.). Therefore, by 2.1.6,

n—1
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there exists 7 € E,(A.) such that

ay 1

ay 0
2l =

all 0

Similarly, there exist 7/ € E,, (Aq) such that

/!
by 1
1
1 . =
/!
b 0
Therefore,
" 11
ay by
1 /!
1 a3 by
T T =
1" 1
a’n bn

By 2.6.6, = ayaie, where o € GL,(A.), as € GL,(A4) and

a! b
al by
a1 . =
al b

Hence the following diagram is commutative:

Al % Acq

a1a21\

, g
Abg —— Acq

Id

Using 3.2.4, it follows that J = J; N Js is generated by n elements. O
The following Corollary generalises 3.4.2.

Corollary 3.4.8 Let A be a Noetherian domain with dim(A) =d > 3. Let J1 and Jo be
ideals of A of height d such that J, + Jo = A. Suppose that J, and Jo are generated by
d elements. Then so is J1 N Js.

The following theorem ([37], Theorem 2.3) settles the Corollary in the case where
d = 2. We give two proofs. The first proof follows [5], Theorem 3.2. The second proof
follows [20], Theorem 2.3.

Theorem 3.4.9 Let A be a Noetherian domain with dim(A) = 2. Let Jy, Jo C A be
ideals of height 2 such that J,+ Jo = A. Suppose that J1, Jo are generated by 2 elements.
Then J1 N Js is also generated by 2 elements.
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Proof 1. Suppose J; = <f1,f2>, Jo = <g1,g2>. Since ht(Jy) = 2 and dim(A4) = 2, it
follows that \/Jo = N™_;m;, where m;’s are maximal ideals of A. Since J; + Jo = A,
Ji ¢ m; for all i. Therefore, by Theorem (1.2.1), J; = <f1, f2> ¢ U m;. Using Lemma
(1.2.2), we choose A € A such that fi + Afz ¢ U m;. Then Jy = (f], f2), where
f1 = f1+ Afa satisfies (f{) + m; = A for i = 1,2,...,n and hence

(D) +VTo = (f) + Npym; = A

We claim, (14 f{A) NJ2 # ¢. Note that since (f]) ++/Jo = A, (f{) + Jo = A. So, there
exists ¢ € A such that g — ¢f] =1, where g € J5. This implies, 1 + ¢f] € Ja, hence the
claim.

Now, J = J; N Jy implies that J = <f{, f2> N <gl,g2>. Therefore, we have surjective
maps o : A%-I—f{c = Jip e = (J1 N J2)1+f{c = (Jl)l—i-f{ca sending e; — fi and e3 — fa,
and 3 : A?c{ - Jp = (J1N Jg)fll = (Jg)f{ sending e; — g;. Since f{ € J; and (1+ fic) €
Ja, these two maps give surjections

~ 5 . 2 o
a,B: Af i ge) = Jrassie = Afassie)

where a and B be the surjections induced from « and . We show that there exists
0 € GL2(Aj;(14f,c)) such that the diagram

, )
At pre) —— Af (4 £10)

A2 B

B A
f1(1+f{c) F1(1+f{c)

Id

commutes and o = 71y2, where y; € GLn(AHf{C) and vy € GLn(Af{).
Now, fi is a unit in Ay. So by 2.1.6, there exists 7 € Ey(Ay;) such that

(£)-(o)

As 1+ flc € (g1,92), it follows that [g1, g2] € Umy (A1+f{c)~ Since any unimodular row
of length 2 is completable, we have 7/ € SLg (A1+f{c) such that

O SR )
(o) (%)
Let o = 77/. Then ac = 3. Since 7 € Ey(Ayr), by 2.6.8, there exist 71 € GLa(A14yc)

and 72 € GL2(Ay) such that o = 77" = 7172. Now the result follows by applying Lemma
3.2.4 to the above diagram. O

Proof 2. Let the notation be as in Proof 1. Let J; = <f{, f2>, Jy = <gl,gg>, where
<f{> + Jo = A. Let J = J; NJy. We claim that the ideal I = <f{,X — 1> N <g1,g2>A[X]
of A[X] is generated by two elements. If so, then

(f1, X = 1) N (g1,92)A[X] = (p1(X), p2(X))

where p1(X),p2(X) € I. Putting X = 1+ fo, it follows that J; N Jo is generated by two
elements.
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Proof of the claim: Let I} = <f{,X — 1>, I = <gl,gg>A[X] and I = I N I5. Since
I(0) = (g1,92), we have a surjection v : A? — I(0) viz. e; — g;, i = 1,2. Since
<f{> + Jo» = A, we can choose an element ¢ € A such that 1+ fic € <g1,g2> = Jy. We
want to define surjections

a: Apppr X = Lo = (1, X — 1) A gro[X]

B AplX)* = Ipy = (g1, 92)Apy[X]
such that a(0) = y14 ;. and B(0) = 75/, where 711/, and 7y, are induced from 7. Let

us define (1) = g1, Be2) = g2.
To define a we first define o : A1, 1o[X]*> = L4 g1, viz. €1 — f{, ez — X —1. Then

a/(0)(e1) = f1, &’(0)(e2) = —1. Note that <gl,g2> € Umg(AHf{C), as 1+ fice <gl,gg>.
Therefore, there exists 7 € GL2(A14y;.) such that

(4)=(n)

fi _ ([ h(X)
T( X-1 )= n(x) ) (20)
Since Iypc = (f{, X — 1) and 7 € GLy(A144;[X]), it follows that (hy(X), ha(X)) =
Iy g;c. Putting X = 0 in (20), we see that

(A _( M)
-1 h2(0) )
Now, we define o : A1y p1c[X]> — T4 as follows: a(er) = hi(X), afez) = ho(X).

Since If{(lJrf{C) = A(1+f{6)f1’ [X], we get <h1(X), hQ(X)> S UmQ(Af{(lJrf{c) [X]) By 2.7.4,
there exists a 0(X) € GL2(Ajy; (14 f¢)[X]) such that o(0) = I and

hi(X) h1(0) 1 9
X = = = .
o(X) < ha(X) ) ( (o) ) =7\ 21 9
Hence the following diagram is commutative:

Agat 10X =— I a+5i0

(T(X)T

B8
Ap ol XP —— I+ f0

Id

Since ¢(0) = I3, by 2.6.1, o(X) splits and hence the claim follows from (3.2.4). Hence
the result follows. O

4  Another Proof of Forster’s Conjecture

4.1 Some useful Lemmas

Lemma 4.1.1 Let A be a domain and b(#£0) € A. Let <b> = <cl, . ,cn>, where ¢; € A.
Suppose ¢; = bd;, d; € A. Then [dy,...,d,] € Um,(A).
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Proof. By hypothesis, b = > gic; = >, gibd; for some g;,d; € A. Hence
b(1—>"", gid;) = 0. Since A is a domain, ., g;d; = 1, proving the assertion. O

Lemma 4.1.2 Let A be a Noetherian domain of finite dimension and s € A. Let T =
AS<1+SA>. Then dim(T) < dim(A).

Proof. We claim that for any maximal ideal m of A either mﬁ<s> # ¢or mﬁ<1—|—sA> #+ ¢
If s € m we are through. Otherwise, <m, s> = A. This implies that there exists ¢ € m,d €
A such that 1 = ¢+ ds. Thus, c=1—ds € m. Hence m N <1 + sA> # ¢, proving the

claim. Thus, no maximal ideal of A survives in the localized ring T = A9<1+§A>7 i.€e.

dim(T) < dim(A). O

Lemma 4.1.3 Let A be a Noetherian domain and S C A a multiplicative closed set. If
I C A is an ideal such that

1 C1 Ck .
=(—, ..., — ; < <
S-17 <51, ,Sk>, s;i€8 (1<i<k),

then there exists s € S such that I = <%, RPN E—Z>

Proof. Since A is Noetherian, I is finitely generated. Suppose g1,..., g, generate I.
Then 4 € S~'I. Hence % = S B where si; €S, pij € A. Let s = H?zls;jsj

I =1 s

and s =II" ,s”. Hence I, = (<, ... %), O
1=1°1¢ s17 )

Theorem 4.1.4 Let A be a domain with dim(A) = d and I C A an ideal. Suppose I/I?
is generated by n elements, where n > d+ 1. Then I is generated by n elements.

Remark 4.1.5 This theorem has already been proved (3.1.11). We give another proof.

Proof. Let ay,...,a, € I generate I modulo I2. Then <a1, ceey an> +1I? = I. Therefore,
by 3.1.7, there exists e € I such that e(1 —e) € <a1, ... ,an> and I = <a1, ... ,an,e>.

Since e € I, I, = A.. Since 1 — ¢ is unit in A;_, and e(1 —¢) € <a1,...,an>, e €
<a1, ceey an>A1_e. Since I = <a1, ceyOp, e> we have
Ilfe = <a1,...,an>A1,e. (21)

Thus, we have surjections: f; : A7__, — I;_., sending e; — a; and fo : A? — I, sending
er — 1and e; — 0 for i > 1. Since e(1 —e) = 3.7 Niai, Yy (ﬁ) a; = 1. Hence
the row [ai,...,ay] is unimodular in Ag_ey. Since dim(A) = d, by Lemma 4.1.2, we
have dim (Ae(1+eA)) <d-1. Alsoon>d+1=d-1+4+2, n > dim (Ae(1+eA)) + 2.
Therefore, by 2.1.10, there exists a matrix o € E, (Ae(1+eA)) such that

aq 1

a9 0
O' =

an 0

Let 0 = II_ eij(Nij), Aij € Ac(14ea). Since there are only finitely many A;;’s, we can
choose b € A such that o € E, (Ac(14epr))- Let 1 +ef = (1 —e)(1 + eb). Hence from
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equation (21), we have a surjection f3 : Al ey = Diger = <a1, . ,an>1+ef induced from
f1. Thus, we have the following commutative diagram:

n b
Ae(1+ef) - Ie(1+ef) = <a1, sy an> = Ae(1+ef)
Ar B Lsep) = A
e(l+ef) e(l4+ef) — <17Oa' 7O> = He(l+ef)

where fg and fg are induced surjections from fs and f;. But, since o is elementary by
2.6.5 and 2.6.4, o splits. Using 3.2.4, it follows that I is generated by n elements. This
completes the proof. O

4.2  On the Eisenbud-Evans conjecture

The aim of this section is to prove theorem 4.2.2 of N. Mohan Kumar (¢f. [23], §3
Theorem 2) (see also [34], Theorem 1) which settles a conjecture of Eisenbud-Evans. We
first prove a special case of 4.2.1. The proofs of 4.2.1 and 4.2.2 are the ones given in [5].
We deduce Forster’s conjecture 4.2.3 from 4.2.2.

Theorem 4.2.1 Let A be a Noetherian domain with dim(A) = d and I an ideal of A[X]
such that ht(I) > 2. Suppose that I/I? generated by n elements, where n > d+ 1. Then
I is generated by n elements.

Proof. Since ht(I) > 2, using 1.8.3, it follows that ht(/ N A) > 1. Let J =1 N A. Then
J # 0. We choose s € J* C I? such that s # 0. Consider the map A[X] — A[X]/sA[X]
sending I — I, where bar denotes reduction modulo sA[X]. Since s € I?,

1+(s)
_ ) Il 1
B ry(s) 2+ (s) I
(s)
Since I/I? is generated by n elements we can choose a1(X),...,a,(X) € I such that
(a1(X),...,an(X)) + I* =1, so that a1 (X),...,an(X) generate 7/72. We have

L]~

n > dim(A) + 1 > dim(A[X]) = 1+ 1 > dim (%) + 1.

By Theorem 3.1.11, we can choose b1 (X), ..., b, (X) € I such that b1(X),...,by(X) gen-
erate I. Therefore, <b1(X), c b (X)), s> = 1. Since s € J%2 C I?, by Lemma 3.1.16, we
can choose ¢;(X) € A[X] such that if d;(X) = b;(X)+sc;(X), then (dy(X),...,dn(X)) =
INI, where Iy + sA[X] = A[X] and ht(I1) >n >d + 1.

It follows from Lemma 2.8.3 that I; contains a monic polynomial and hence using
Lemma 3.3.1, we get <s> + I N A= A. Thus, I; N A contains an element of the form
1+ sa for some a € A. Let S = (1 + sA). Then S~'I; = S~ A[X] and hence

STHdy(X),...,dn(X))y =S INST' T = I
By Lemma (4.1.3), there exists g € A such that I 4 = (di(X),... ,dn(X)>1+Sg. Also,

since s € I, 1 € I;. Therefore, we have surjections: f : Ajys4[X]" — Ii4s4, sending
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e; — d;(X) and f': As[X]™ — I, sending e; — 1, €; — 0 for ¢ > 1. By Lemma 4.1.2,
dim (Ass) < dim(A) = d. Hence, n > d+1=d—1+2 > dim (4ss5)+2. Let B = Ays[X].
Since s € I, I, = Ass[X]. Since S*1<d1(X), . ..,dn(X)> = Ig, it follows that the row
[d1(X),...,dn(X)] is unimodular in A;g[X]. By Lemma 2.8.4, there exists a matrix
o(X,T) € GL,(BI[T)]) such that o(X,0) = I,, (which implies that o(X,T) € SL,(B[T]))
and

a1 (X) 1
do(X) 0
o(X,1) . =1 .
d,(X) 0

Since 0 € SL,(Ass[X,T]), we obtain ¢ € A such that o(X,T) € SL, (As(1+sc) [X, T])
Let 1+ sh = (14 sc)(1 + sg). Then we have the following commutative diagram.

n f
As(1+sh) [X] Is(1+sh) = <d1 (X), ceey dn(X)>
U(XJ)T 1d

n F
AS(1+Sh) [X] Is(1+5h) = <]., O7 e ,0>

where ]?, ]?' are induced by f and f’. Since o(X,0) = I, by 2.6.5, 0(X, 1) splits. Using
3.2.4, it follows that I is generated by n elements. O

Now we give another proof of the Theorem 4.2.1, in which we need not assume that
ht(7) > 2.

Theorem 4.2.2 Let A be a Noetherian domain with dim(A) = d. Let I be an ideal of
A[X]. Suppose I/I? is generated by n elements, where n > d+ 1. Then I is generated
by n elements.

Proof. Let S’ be the multiplicative closed subset A — {0}. Then S’ 'A is a field
and hence S’ "' A[X] is a PID. So, there exists an element g(X) € I such that the ideal
U S’_lA[X] is generated by ¢g(X). Using Lemma 4.1.3, we choose s € S’ such
that I, = (g(X)),. Let f(X) € I?, f(X) # 0 and sf(X) = h(X). Then h(X) #
0, as A is a domain. Since h(X) # 0, dim (A[X]/(h(X))) < d. Now, consider the
natural surjection A[X] — A[X]/(h(X)). Since I/I? is generated by n elements, 7/72
is also generated by n elements, where bar denote the reduction modulo h(X). As
n > dim (A[X]/(h(X))) + 1, using Theorem 3.1.11, I is generated by n elements, say
a1(X),...,an(X). Hence I = (a1(X),...,an(X),h(X)), where h(X) € I?. Applying
Lemma 3.1.16, we can find ¢;1(X),...,cn(X) in A[X] such that

(a1(X) + er(X)D(X), ..., an(X) + ca(X)(X)) = TN T,

where ht(I1) > d+1 and (h(X))+ I = A[X]. Since h(X) = sf(X), sA[X]+ 11 = A[X].

Since ht(l;) > d + 1, by Lemma 2.8.3, I; contains a monic polynomial and hence
using Lemma 3.3.1, we get <s> + 11 NA = A Thus, [1 N A contains an element of
the form 1 + sa, where a € A. Let S = 1+ sA. Then S~'I; = S71A[X]. Since
(b1(X),....bn(X))=INL, S =1Is=S5"b(X),...,by(X)). Therefore, there are
surjections: Ag[X]™ — Ig, sending e; — b;(X) and As[X]" — I, sending e; — g(X),
e; — 0fori>1.
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These two surjections induce surjections Ass[X]" — Igs, bendlng € — b (X) and
Ass[ X" — Igg, sending e; — g(X), e; — 0 for ¢ > 1. Since <b1( )>ss
I,s = <g(X)> , we have b;(X) = g(X)fi(X), where f;(X) € Ass[X] (1 < i < n). By
Lemma 4.1.1, [fl( )y« fn(X)] is unimodular row in the ring Ass([X]). As in (4.2.2),
o
(X

we see that there exists a matrix o(X,T) € SL,, (Ass[X,T]) such that ,0) =1, and
H1(X) 1
f2(X) 0
o(X,1) . = .
fn(X) 0
b1 (X) 9(X)
ba(X) 0
Hence o(X, 1) . =
b (X) 0
Now, proceeding as in Theorem 4.2.1, we see that I is generated by n elements. O

Corollary 4.2.3 (Forster’s Conjecture) Let k be a field and p C A = k[ X1, ..., X,]
be a prime ideal such that A/p is reqular. Then p is generated by n elements.

Proof. By the Forster-Swan theorem, p/p? is generated by n elements. The corollary
now follows from 4.2.2. O

4.3 On a variant of Mandal’s Theorem

Let A be a Noetherian ring. Let I C A[X] be an ideal. Then we have the following
diagram :
— s r

1
JX 0 JX—O
10) — 10)/1(0)?

Suppose I contains a monic polynomial and I/I? is generated by n elements, where
n > dim(A[X]/I)+2. Then by Theorem (3.3.2), I is generated by n elements. Therefore,
1(0) is also generated by n elements. Let aq,...,a, generate I(0). It is a quite natural
to ask whether a1, ..., a, can be lifted to a set of generators of I. We have the following
theorem due to Mandal. This says that the answer to the above question is affirmative
if the corresponding set of generators @z, . .., @, of 1(0)/1(0)? can be lifted to generators

91(X), ..., gn(X) of I/I%

Theorem 4.3.1 (¢f. [19]) Let A be a Noetherian ring. Let I C A[X] be an ideal
containing a monic polynomial. Suppose 1/I? is generated by n elements, where n >
dim(A[X]/1)+2. Suppose I(0) = (a1, ..., a,) and the generators ax, ..., an of 1(0)/1(0)?
can be lifted to the generators gi(X),...,gn(X) of I/I?. Then there exist a set of gen-
erators N1 (X),...,nn(X) of I such that 1;(0) = a;.

Proof. By hypothesis, {(g1(X),...,gn(X)) +I? = I and g;(0) — a; € 1(0)*>. Now, we
split the proof of the theorem in four steps.
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Step 1. In this step we change g;(X) to h;(X) for 1 <1i <mn, so that
(hi(X),...,ho(X))+1* =1 (22)

and h;(0) = a; for 1 <14 < n. We consider the elements a; — ¢;(0). Note that a; — ¢;(0) €
I(0)2. Since there is a natural surjection I? — I(0)?, there exists \;(X) € I? such that
Ai(0) =a; —g:(0), 1 <i<n. Weset hj(X) = X\(X)+g:(X). Then h;(0) = a; and since
\i(X) € I%, hi(X) = ¢;(X) modulo I%2. Further, by choosing a monic polynomial f € I
and replacing h1 by hy + X fP for large p > 1, we may assume that h; is monic.

Step 2. In this step we shall prove that <h1(X), . ..,hn(X)> + I?X = I. Suppose
the left hand side is equal to K. Using Lemma 3.1.5, it is enough to show that (i)
K +1I? =1 (ii)) V(K) = V(I). Since h;(X) € K, (i) follows from (22). Also, K C I
implies V(I) C V(K). So, to prove (ii) we have to show that V(K) C V(I).

Let p € V(K). Then I2X C p. Hence p D I? or X € p. If p D I? then as p is a
prime ideal, p D I. On the other hand if X € p, then p D <h1(0), . ,hn(0)> Hence
p D (I(0),X) D> I. Thus, V(K) C V(I).

Step 3. By Lemma 3.1.9, it follows that there exists some d(X) € I?X such that

(h1(X),...,hn(X),d(X)) = I.Let J = INA. Now, we consider the ring S R M)

Let bar denote reduction modulo (J2[X], h1(X)). Since n > dim (A[X]/I) + 2, as
in 3.3.2, n — 1 > dim(S) + 1. Since T = (ha(X),...,h,(X),d(X)), where d(X) € I2,
using 3.1.16, we can find \;(X) € A[X], 2 < i < n, such that I = (h5(X),...,h, (X)),
where h}(X) = h;(X) + \(X)d(X). Note that since d(X) € I*°X, h%(0) = h;(0) = a;.
Therefore, (h1(X), h5(X),..., k(X)) + J[X] = I. By Lemma 3.1.9,

(hi(X), hy(X), ... b (X)) =IN T,

where I’ + J2[X] = A[X]. Since h1(X) € I’ is monic, by Lemma 3.3.1, I'N A+ J? = A.

Step 4. It is clear from Step 3, that I’ contains an element of the form 1+ 7, where j € J.
Therefore, (I N1")14; = Ii4j = (hi(X), hy(X),..., hl(X)). Also, j € J = I N A implies
that I; = A;[X]. Since j € J, j € I(0) = <a1, .. .,an>, J =211 Niaj, for some \; € A.
That means 1 = 7" | %ai € I1(0);. Therefore, we have surjections: A;4;[X]" — 14,
sending e; — hi(X) and e; — h}(X) for 2 < i < n, and A;[X]" - I; = A;[X] sending
e; — a;. These two maps induce surjections; A4 [X]" — Lt = Aja4y[X]
ViZ. €1 — hl(X), €; — h;(X) for 2 S ) S n. Aj(1+j)|:X]n - Ij(1+j) = Aj(1+j)|:X
viz. e; — a;. Let f1(X) = hi(X) and fi(X) = hi(X) for 2 < i < n. We have
two unimodular rows [f1(X), fo(X),..., fu(X)] and [a1,. .., ay] in Aj;4;)[X] such that
fi(0) = a;. Since f1(X) is monic, by Lemma, 2.7.4, there exists 7(X) € GLy, (4145 [X])
such that 7(0) = I,, and

f1(X) a1
f2(X) as
7(X) ) =
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This implies that 7(X) = 7 (X)72(X), where 7(X) € GL,(A14+,[X]) with m(0) = I,
and 71 (X) € GL,(A;[X]) with 7 (0) = I,,. Let

f1(X) pa(X) a1 v1(X)

f2(X) p2(X) as v2(X)
75 (X) . = : and (X)"'] . | = .

fn(X) Nn(X) a.n Vn(X)

Then (p1(X),..., un(X)) = I1i4j, and (v1(X),...,vn(X)) = I; and p;(X) = v;(X) in
L4 Let n;(X) € I, be the pull back of (u;(X),v;(X)). By 3.2.3, it follows that
I = <771(X),...,nn(X)>. Since 71(0) = 72(0) = I, 1:(0) = f;(0) = a; and v;(0) = a;.
Since 1;(X) € I is the pullback of (u;(X), v;(X)), 7:(0) € 1(0) is the pullback of (a;, a;).
Therefore, 7;(0) = a;. This completes the proof. O

Appendix

Some topological examples: There are many useful analogies between topology
and algebra. This appendix contains some topological examples. Some of these examples
show that the various assumptions made in proving some of the theorems in this paper
cannot be dropped. The facts in Topology used in this section are contained in [25].

Let Abe aring and I C A is an ideal. The following example shows that the canonical
map SLa(A) — SLo(A/I) is not surjective. Before proving this we prove the following
useful lemmas.

Lemma 4.3.2 Let A be a field or a local ring. Then SL,(A) = E,(A).

Proof. We prove the lemma by induction on n. Let aw € SL,(A). We show that there
exist 8,7 € E,(A) such that Bay = I,. It follows that a = 371v~1 € E,(A). It
is enough to show that one can transform « to I,, by performing elementary row and
column operations. Using 2.1.7, we can transform the first column of « to (1,0,...,0)%.
Thus, there exists 81 € E,(A) such that

o3 2)

(where 7 € SL,—1(A)). Using 2.1.6, we can transform the first row of 81« to (1,0, ...,0).

Thus,
1 0
Pram = ( 0 7 >

where 1 € E,(A). Now, by induction there exist 02,72 € En_1(A) such that Ga77y, =

I,—1. Let B = L0 and v = L0 . Then BiB1av1vs = I,. Setting
0 62 0 Y2

B = 8551 and v = 175 the lemma follows. O

Lemma 4.3.3 The group SL,(R) is path connected.

Proof. By Lemma 4.3.2, SL,(R) = E,(R). Therefore, any o € SL,(R) can be written
as 0 = II¥_, E;;(A\), A € R. The map [0,1] — SL,(R) given by ¢ — II¥_, E;;(\t) gives a
path from I, to o, showing that SL,,(R) is path connected. O
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Definition 4.3.4 The group O, (R) is the subgroup of SL,(R) consisting of matrices
a € SL,(R) such that aa! = I,,. We define SO, (R) = SL,(R) N O, (R).

Example 4.3.5 (See 2.1.13)
We consider the ring R[X,Y, Z, T] and its ideal <XY - 7T — 1>. Then the natural map

SLQ(R[X,Y,Z,T])HSL2< R[X,Y,Z,T] )

(XY - ZT - 1)
is not surjective. In fact, there is no lift of the matrix

X Z SLy(R[X,Y, Z,T))
(T 7) (XY — 2T - 1)

to a matrix belonging to SLy(R[X,Y, Z,T]). We give a proof due to C.P. Ramanujam,
cf. ([30], pg. 11).
Suppose to the contrary there exists 7 € SLy(R[X,Y, Z, T]) such that
= fll(X7Y7Z7T) fl?(X7Y7Z7T) lifts X
[21(X,Y,Z,T)  foX,Y,Z,T) T '
(XY — ZT — 1)hiy(X,Y, Z,T)

This implies that
) (X, Y, Z,T )
2) f12(X,Y, Z,T (XY = ZT — 1)h12(X,Y, Z,T)
3) fa1(X,Y, 2, T (XY = ZT — 1)h21 (X, Y, Z,T)
(XY — ZT — 1)h9a(X,Y, Z,T)
where h;;(X,Y, Z,T) € R[X,Y,Z,T]. We now define a map r : My(R) — SLy(R) as

4) f22(Xa Ya ZvT
follows:
a b _ fll(avbacv d) flg(a,b,C, d)
"\e da )T\ falabed) falabed )
a
c

In view of equations 1, 2, 3, 4, if ad —bc =1, r ( CCL b > = ( 2 > Hence the map

d
r: M2(R) — SLy(R) is a retraction.

Therefore, the map r. : 1 (Ma(R), I5) — w1 (SL2(R), I5) is surjective. Now, since
Ms(R) ~ R%, m1(Ma(R), ) is a trivial group. We prove that m(SL2(R), I2) is not a
trivial group and that will yield the required contradiction.

There is an inclusion map i : SO2(R) < SLy(R). Using the Gram-Schmidt orthogo-
nalization process we get a map ' : SLy(R) — O2(R). Note that 7/(7) = 7if 7 € SO2(R).
We also have the determinant map det : O3(R) — {1, —1}. As SLy(R) is path connected
and det(r'(I2)) = 1, the image of det(r’) = {1}. This shows that r'(SL2(R)) = SO2(R)
and 7’ : SL2(R) — SO2(R) is a retraction. So, we have surjection

(7”/)* : Wl(SLQ(R),IQ) — Wl(SOQ(R),IQ).

[
<IN

-X
-7
-T
-Y

~— ~— —

The homeomorphism, j : S — SO3(R) given by
cos § —sin 6 )

sin 6 cos 0

(cos 0,sin 0) — (

shows that 71(SO2(R), I) = 71(S*, e) = Z. Therefore, it follows that m;(SLa(R), I3) is
not trivial. Hence the result follows. O
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Example 4.3.6 We consider the ring R[X, Y] and its ideal (X?+Y?2—1). There exists
a natural map

R[X,Y]
SLy(R[X,Y]) — SLs <m> .

We claim that there is no lift of the matrix

X Y R[X, Y]
(—7 7>ESL2<<X2+Y2_1>>

to a matrix belonging to SL2(R[X,Y]). Assume to the contrary we get a lift

(B ) (5 %)

where 7 € SLy(R[X,Y]). This implies that
1) fuX,Y) - X =(X*+Y? - 1hp(X,Y)

2) f2(X,Y) =Y = (X* +Y? — Dhi2(X,Y)

3) f1(X,Y) +Y = (X?+Y? — 1)han (X,Y)

4) fo2(X,Y) = X = (X* +Y? = Dhoo(X,Y)
where h;;(X,Y) € R[X,Y]. We define a map r : R* — SLy(R) given by

fll(avb) f12(aab)
(a,6) = ( for(a,b)  faa(a,b) ) '

a b
—b
get a retraction 7’ : SLy(R) — SO2(R) and homeomorphism j : S* — SO2(R). One can
verify that the composite map a = j~1.r".r : R? — S! is a retraction. This implies that
ax : m(R?) — m1(S1) is surjective. But, m1(S!) & Z and 7 (R?) is trivial. This is a
contradiction, hence the claim. o

Note that, in view of 1,2,3.4, if a® + b? = 1, then r(a,b) = . Asin 4.3.5, we

Example 4.3.7 Let us consider the ring A = % and the maximal ideal m =
(x —1,y) of A. Since (z —1)(z + 1) = —y* € m?, it follows that (# — 1) € m? and hence
m/m? is generated by one element. We show that m is not principal. This shows that
Question 2 raised in the introduction is not valid in general.

Algebraic Proof. We have an inclusion

4 RIXY] cxyl
TUXTyyro1)  (XZ4YZ-1)

The change of variables X +iY = U and X —iY =V gives an isomorphism

ClX,Y] _ CU,V]
(X2+Y2-1) (UV-1)
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We claim that
Clu, V]

For, we have surjective map

b Clu, Vi

—1
T<UV —1> —Cuu]

viz. U — U,V — U~!. We want to define a map in opposite direction. Let S be the

multiplicative closed subset {1,U,U?,...} of C[U]. Clearly, U is unit in %. So,

U — U gives a homomorphism

Therefore, there exists a homomorphism

Clu,v

s-lclu] =clu, v — #.
(UV —1)

It can be easily shown that the composites are identity, proving the claim.

Since C[U,U~'] is a PID, the image of m in SELNC.O SEY C[U,U"'Y = Bis a
(x24y2-1)

principal ideal. We compute the generator. Since X +iY = U, X —iY = U~!, we see that
X =U+U" 'y = U=U" HencemB = S, where I = (U2—2U+1,U%~1) = (U~1).
One can easily check that the units of C[U, U 1] are precisely the set {\U"|\ € C*,n €
Z}. Now, we make a general remark. Suppose A — B is an extension of domains and
J C A is an ideal such that JB = <c>, where ¢ € B. Suppose J = dA, d € A, then there
exists a unit 4 € B such that d = pc.
Applying the above remark to the rings A = % and B = %

that in order to prove that m is not principal it is enough to show that for A € C*, and

n € Z the element AU™(U —1) does not belong to the image of R[X. Y] CX.Y]
(xz4v2-1)  (x24v2-1)

, We see

in

Now, complex conjugation o of C induces a ring isomorphism

. C[X,Y] C[X,Y]
TIXTEyIo0) (X2 4vRody

R[X,Y]

o e gtolg) ; :
We have o(g) = g, if and only if g = =% belongs to the image of <X2+Y271> in the

. C[X,Y] . N _ -1
ring 7<X2+Y271>. Since o(X +iY) =X —iY, o(U) =U"".

Thus, if AU™(U — 1) belongs to the image of

RX.Y] ;. _ CX.Y]
(x24v2-1)  (X24v2-1
ANU™(U —1) = \UT™(U~! —1). This implies that AU?"*! = —\. This is a contradiction.
This proves that m is not principal. a

>, then we get

Topological Proof. Since r —1 € m, m(,_;) = A(,_1). Therefore, we have a
surjection fi : Az_1) = Mm(y_1), sending e; to 1. Since (z+1)(z—1) € <y>, Mgy1) = <y>
and hence we have a surjection fa : A,41) = M(zy1), sending e; to y. These two maps

induce surjections J/c\l, fg C A (a—1) ™ M) (e—1) = A1) (@-1)-
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Suppose to the contrary that m C A is principal, generated by g € A. Then y = ghy
and 1 = ghy, where hy is a unit of A1) and hg is a unit of A_;). Therefore,

y = hlhgl = hihs, where h3 is a unit of A, _1). We write hy = ();(j_”lgl, Az,y) € A.

Since h; is a unit of A, 1), there exists p(x,y) € A such that

AMz,y) plzy)
(z+ 1) (z+1)m

Note that A(z,v), u(z,y) define functions from S* to R and é«(ffﬁ?n (’;(_fg?l define func-

tions from S1 — {(1,0)} to R. Therefore, (Z(:lg)n # 0 for all (a,b) € ST —{(-1,0)}, i.e.
hi(a,b) # 0 for all (a,b) € S* — {(—1,0)}.

Since hy is continuous and S' — {(1,0)} is connected, by the Intermediate Value
theorem, it follows that either hq(a,b) > 0 for all (a,b) € ST — {(—1,0)} or hi(a,b) <0
for all (a,b) € S* — {(—1,0)}. Similarly, we see that hs is either positive for all (a,b) €
St —{(-1,0)} or negative for all (a,b) € St —{(1,0)}. Therefore, hihs is either positive
on ST — {(-1,0)} — {(1,0)} or negative on S — {(—=1,0)} — {(1,0)}. But y > 0 on
the part of S' — {—1,0} — {1,0} which is above the X-axis and y < 0 on the part
of S — {(=1,0)} — {(1,0)} which is below the X-axis. This contradicts the fact that
hihs =y, proving that m is not a principal ideal. O

We end this section with the following theorem. The proof we give is based on [38].

Theorem 4.3.8 Let A = — 22 Then since 22 + y?+22 =1, (1,9,2) €
(x24v24z2-1)

Umgs(A). There does not exist a matriz in SL3(A) having first row (x,y, z).

To prove the theorem need a few definitions and lemmas.

Definition 4.3.9 A topological space Y is said to be contractible if the identity map
Y — Y is homotopic to a constant map Y — Y, (i.e. the map which sends every element
of Y to a fixed element of V).

Example 4.3.10 Let 5% = {(a,b,c) € R3|a® + b? + ¢? = 1} be the real two sphere. Let
P € 5?. Then, S? — {P} is contractible.

We state some lemmas in generality we need them.

Lemma 4.3.11 The map o : S — SLy(R) given by

a(cos 6,sin 0) = ( cos nf —sin nd >

sin nf  cos nd
is not homotopic to a constant map.

Proof. Let the notation be as in 4.3.5. Suppose to the contrary that « is homotopic to a

, 1
constant map. Then so is the composite map §! —+ SLy(R) —— SO2(R) N Sl
But, the composite map sends z € S* to 2". This map is not homotopic to a constant
map. This yields a contradiction, proving the lemma. O

Lemma 4.3.12 Let a : St — SLy(R) and 3 : St — SL3(R) be continuous maps which
are both homotopic to constant maps. Then o : S — SLy(R) is also homotopic to a
constant map. (Note that af make sense as SL2(R) is a group).
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Lemma 4.3.13 Let S' C X, where X is a contractible topological space. Suppose o :
S — SLy(R) extends to a map X : X — SLy(R). Then « is homotopic to a constant
map.

Proof of Theorem (4.3.8). Since 2 + y? + 2% = 1, [z,7,y] € Umz(A). Since (z — 1)
is a unit of A, 1, [2(z — 1),z,y] € Ums(A,_1). Further, since 2% + 3% + 2% = 1, we get

(z(z = 1),z,y) oz (1 — z,z,y). Therefore,
(ay) T G-y PR G-z TR w00,

as 1 — z is a unit of A,_;. Thus, it follows that the row [z,x,y] is completable in the
ring A,_1. We have a completion given by

z 2
o=z -1 0 € SL3(A,_1).
y O 1

Similarly, the row (z,z,y) is completable in the ring A.;. The matrix

_Zil _ZLH
T = xT 1 0 S SLg(AZ+1)
Y 0 1

gives the completion. Since the first column of o and 7 are equal to (z,z,y), the matrix
o~ 17 has first column (1,0,0) and

where 1 € SLQ(A(zfl)(ZJrl)).

Now, we digress a little bit and introduce some notations which will be used in the
rest of the proof. Since o € SL3(A._1), we have a map S? — (1,0,0) — SL3(R), sending
(a,b,c) to o(a,b,c). (We denote the matrix o;;(a,b,c) by (o(a,b,c))).

Now, suppose 3 € SLz(A) has first column (z,z,y). Then o~ !'7 = 0 =138~ 17, where

1 % x 1 % %
U‘lﬁ = 0 m and ﬂ_lr = 0 7o
0 0

Note that n; € SL3(A,—1) and 2 € SL3(A.+1). Since

1

ok
ocor=1 0 7
0

it follows that n = nyns.

Let U = S? — P, where P = (0,0,1) and V = S? — Q, where Q = (0,0, —1). Then,
we have functions A\; : U — SLy(R), sending (a,b,c) to n1(a,b,c), A2 : V — SLy(R),
sending (a, b, ¢) to n2(a,b,c) and A3 : UNV — SLy(R), sending (a,b,c) to n(a,b,c). A

computation shows that
| [P =y —2xy
Nz=0 = 2y 22 —y? )
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If we restrict A3 to the equator S! we get a map S — SL(R), given by

As(cos 6,sin 6,0) = ( cos 20 —sin 20 ) .

sin 20 cos 20

By Lemma 4.3.11, it follows that As|g: is not homotopic to constant map. But, since
17 = 112, it follows that Asz|gr = A1|g1.A2|s1. Since A; is defined on U, A is defined
on V and U and V are contractible, by Lemma 4.3.13, A1|g1 and Ag|s1 are homotopic
to constant maps. Therefore, by Lemma 4.3.12, A3|s1 is homotopic to a constant map.

This is a contradiction. Hence the theorem follows. O
References

[1] S. S. Abhyankar; Algebraic Space Curves. Sém. Math. Sup. 43, Les presses de l'université
de Montréal (1971).

[2] S. S. Abhyankar; On Macaulay’s Examples (Notes by A.Sathaye). In: Conf. Comm. Alge-
bra; Lawrence (1972). Springer Lecture Notes in Math. 311 (1973), 1 - 16.

[3] M. F. Atiyah, I. G. Macdonald; Introduction to Commutative Algebra. Wesley, Reading,
Mass. (1969).

[4] S. M. Bhatwadekar, R. A. Rao; Efficient Generation of Ideals in Polynomial Extensions of
an Affine Domain. Unpublished manuscript.

[5] S. M. Bhatwadekar, Raja Sridharan; The Euler Class Group of a Noetherian Ring. Com-
positio Mathematica 122 (2000), 183 - 222.

[6] S. M. Bhatwadekar, Raja Sridharan; On Euler Classes and Stably Free Projective Modules.
Proceedings of the International Colloquium on Algebra Geometry and Arithmetic, Mumbai
2000, Narosa Publishing House, pgs 139 - 158.

[7] D. Eisenbud; Commutative Algebra with a view Toward Algebraic Geometry. Springer,
GTM 150 (1995).

[8] D. Eisenbud, E. G. Evans; Jr., Generating Modules Efficiently: Theorems from Algebraic
K-Theory. J. Alg. 27 (1973), 278 - 315.

[9] O. Forster; Uber die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring,
Math.Z. 84 (1964), 80 - 87.

[10] N. S. Gopalakrishnan; Commutative Algebra. Oxonian Press, (1984).

[11] S. K. Gupta, M. P. Murthy; Suslin’s work on linear groups over polynomial rings and Serre’s
problem. ISI Lecture Notes, no. 8 (1980).

[12] G. Horrocks; Projective modules over an extension of a local ring, Proc. London Math.Soc.
14 (1964), 714 - 718,

[13] I. Kaplansky; Commutative Rings. Allyn and Bacon, Boston (1970).

[14] L. Kronecker; Grundzuge einer arithmetischen Theorie der algebraischen Groben, J.reine
angew. Math. 92 (1882), 1 - 123.

[15] E. Kunz; Introduction to Commutative Algebra and Algebraic Geometry; Birkhiuser,
Boston (1985).

[16] T. Y. Lam; Serre’s Conjecture. Lecture Notes in Mathematics (635), Springer - Verlag
(1978).

[17] S. Lang; Algebra - Third Edition. Addison - Wesley (1993).

[18] S. Mandal; On efficient generation of ideals, Invent. Math. 46 (1978), 59 - 67.

[19] S. Mandal; Projective Modules and Complete Intersections. Lecture Notes in Mathematics

(1672), Springer (1997).

66



[20]

[21]
22]

[23]
[24]

[25]
[26]

27]
(28]

[29]
[30]

31]
32]
[33]

[34]
[35]

[36]
37]

[38]

[39]
[40]

[41]

S. Mandal, Raja Sridharan; Euler Classes and complete intersections. Jornal of Mathemat-
ics of Kyoto University, Vol. 36, No. 3, (1996).

H. Matsumura; Commutative Algebra, Second edition. Benjamin, New York (1980).

Manoj Kumar Keshari; Euler Class Group of a Noetherian Ring. M.Phil Thesis, T.I.F.R,
2001.

N. Mohan Kumar; On two conjectures about Polynomial Rings, Inv. Math. 46 (1978), 225
- 236.

M. P. Murthy; Generators for Certain Ideals in Regular Rings of Dimension Three. Comm.
Math. Helv. 47 (1972), 179 - 184.

James R. Munkres; Topology, A first course. Prentice-Hall of India Private Limited (1996).

Budh S. Nashier; Monic polynomials and generating ideals efficiently, Proc. Amer. Math.
Soc. 95 (1985), 338 - 340.

D. G. Northcott. Lessons on Rings, Modules and Multiplicities. Cambridge University Press
(1968).

C. Peskine; An introduction to Complex Projective Geometry, 1. Commutative Algebra.
Cambridge University Press, Cambridge Studies in Advanced Mathematics vol. 47 (1996).

D. Quillen; Projective Modules over Polynomial Rings. Inv. Math. 36 (1976), 167 - 171.

C.P.Ramanujam; A TRIBUTE. Tata Institute of Fundamental Research Studies in Math-
ematics. Springer - Verlag, (1978).

R. A. Rao; An elementary transformation of a special unimodular vector to its top coefficient
vector. Proc. Amer. Math. Soc. 93 (1985), 21 - 24.

D. Rees; Two Classical Theorems of Ideal Theory. Proc. Cambridge Philos. Soc. 52 (1956),
155 - 157.

H. Sarges; Ein Beweis des Hilbertschen Basissatzes, J. reine angew. Math. 283/284 (1976),
436 - 437.

A. Sathaye; On the Forster-Eisenbud-Evans Conjecture. Invent. Math. 46 (1978), 211-224.

R. Y. Sharp; Steps in Commutative Algebra. London Mathematical Society Student Texts
19 (1990).

Raja Sridharan; Non-vanishing sections of Algebraic Vector Bundles. J.Algebra.

Raja Sridharan; Homotopy, the Codimension 2 Correspondence and Section of Rank 2
Vector Bundles. Journal of Algebra 176 (1995), 1001-1012.

R. R. Simha; Spheres and Orthogonal Groups. Bombay Mathematical Colloquium, Bulletin
vol. 14, Number 1, January 1998.

A. A. Suslin; On Stably free modules, Math. USSR Sb. 31 (1977), 479 - 491.

A. A. Suslin; Projective Modules over Polynomial Rings (Russian). Dokl. Akad. Nauk S.
S. S. R. 26 (1976).

R. Swan; The Number of Generators of a Module. Math. Z. 102 (1967), 318 - 322.

Rabeya Basu; School of Mathematics, Tata Institute of Fundamental Research, Homi

Bhabha Road, Mumbai 400005, India. email: rbasu@math.tifr.res.in, (Partially sup-
ported by the TIFR Endowment Fund).

Raja Sridharan; School of Mathematics, Tata Institute of Fundamental Research,

Homi Bhabha Road, Mumbai 400005, India. email: sraja@math.tifr.res.in

67



