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Introduction

The aim of this expository paper is to give a self contained account which is accessible
to students of some of the work done by Indian mathematicians in the field of projective
modules. This is one of the topics in which algebraists at the Tata Institute (T.I.F.R)
have worked on a lot. Our aim is not to give a historical account of their contributions
but to focus on the proof of some of the results which were proved following the proof
of the “Quillen - Suslin” theorem. We have chosen to focus on results whose proofs can
be easily understood by students. In order to keep the presentation totally elementary
we do not even introduce the notion of a projective module. We use only results about
projective modules given by “unimodular rows”. We believe that a student who has
read this paper will be able to understand and appreciate the many other contributions
that mathematicians have made to the subject and read the recent work done in this
area. We would like to emphasise that the self contained presentation we have made here
has been possible because the subject matter evolved with time thanks to the efforts of
many mathematicians some of whose work is not mentioned in this paper. We hope that
the reader of this paper will delve into the many things we left out by looking at the
references and MathSciNet for example. We now give a brief account of the contents of
this paper.

Let A = k[X1, . . . , Xn] be the polynomial ring in n variables over a field k and p ⊂ A
be a prime ideal. Then p is finitely generated as A is Noetherian. We define µ(p) to be
the minimum number of elements needed to generate p. By Krull’s dimension theorem
µ(p) ≥ ht(p). One can ask if µ(p) is bounded. This is however false. There are classical
examples of height 2 prime ideals p in C[X1, X2, X3] constructed by Macaulay (cf. [2])
which require an arbitrary large number of generators. In Macaulay’s examples, the ring
C[X1, X2, X3]/p has a singularity at the origin.

However, if A = k[X1, . . . , Xn] and p ⊂ A is a prime ideal such that A/p is regular,
then Forster (cf. [9]) proved that p is generated by n+1 elements. He conjectured that p

is generated by n elements. The conjecture of Forster was settled by Sathaye (cf. [34]) in
the case where k is infinite and shortly afterwards by Mohan Kumar (cf. [23]) in general.
One of the aims of this paper is to give a proof of their theorem namely;

Theorem 1. Let A = k[X1, . . . , Xn] be the polynomial ring in n variables over a field k
and p ⊂ A be a prime ideal such that A/p is regular. Then p is generated by n elements.

We shall begin by considering some special cases of this theorem.
1. A = k[X ] is a PID and there is nothing to prove.
2. A = k[X1, . . . , Xn]. If m ⊂ A is a maximal ideal, then m is generated by n

elements, cf. 3.4.1.
3. A = k[X1, X2]. If p ⊂ A is a prime ideal, then ht(p) = 1 or ht(p) = 2. If ht(p) = 1,

p is principal (cf. 1.10.5). If ht(p) = 2, p is maximal and hence is generated by 2 elements.
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4. Let A = k[X1, X2, X3]. To prove Forster’s conjecture it is enough to prove that
if p ⊂ A is a prime ideal of height 2 such that A/p is regular, then p is generated by
3 elements. This was proved independently by Abhyankar and Murthy in [1] and [24],
thus, settling the first non trivial case of Forster’s conjecture.

Now, suppose p ⊂ k[X1, . . . , Xn] is such that A/p is regular. Then it follows from
a theorem of Forster-Swan (cf. [9], [41]) that p/p2 is generated by n elements. Thus,
Forster’s conjecture will be true if the following question has an affirmative answer.
Question 1 : Suppose p ⊂ k[X1, . . . , Xn] is a prime ideal such that p/p2 is generated
by n elements. Is p generated by n elements ?

Sathaye and Mohan Kumar settled Forster’s conjecture by giving an affirmative an-
swer to Question 1.

More generally Mohan Kumar proved the following :
Theorem 2. Let A = k[X1, . . . , Xn] and I ⊂ A be an ideal such that I/I2 is generated
by r elements, where r ≥ dim(A/I) + 2. Then I is generated by r elements.

Using Theorem 2, one can settle Question 1, and hence Forster’s conjecture as follows.
If ht(p) = 1, then p is principal and there is nothing to prove. Assume ht(p) ≥ 2.

Then dim(A/p) ≤ n− 2. Therefore, n ≥ dim(A/p) + 2. Now, since p/p2 is generated by
n elements, by Theorem 2, p is generated by n elements.

The following theorem of Mandal (cf. [19]) is a generalisation of Theorem 2.
Theorem 3. Let A be a Noetherian domain, I an ideal of A[X ] containing a monic
polynomial. Suppose that I/I2 is generated by n elements, where n ≥ dim (A[X ]/I)+2.
Then I is generated by n elements.

In this paper we give a proof of Theorem 3 (cf. 3.3.2) which easily implies Forster’s
conjecture (cf. 3.3.3).

We also apply Theorem 3, to prove the following addition principle (cf. 3.4.7).
Theorem 4. Let A be a Noetherian domain with dim(A) = d. Let n ≥ d+3

2 . Let J1

and J2 be two ideals of A of height n such that J1 + J2 = A. Assume that J1 and J2 are
both generated by n elements. Then J1 ∩ J2 is generated by n elements.

The layout of this paper is as follows. In the first section we prove some basic results
in commutative algebra. These results can be found in [21] and are included only to
make the paper self contained and accesible to students. In Section 2, we prove variants
of theorems of Quillen and Suslin which are used in the proof of Theorem 3. In Section 3,
we prove Theorem 3 of S. Mandal (cf. 3.3.2) and use it to deduce Theorem 1 (Forster’s
Conjecture). In Section 4, we give another proof of Theorem 1. We end the section with
a variant (due to Mandal) of Theorem 3.

1 Basic Commutative Algebra

In this section we review certain basic concepts which we need later. We give three
methods of building new rings from old ones.

Throughout this paper by a ring we mean a commutative ring with an identity ele-
ment.

1.1 The construction of new Rings from old ones

Polynomial Rings: Let A be a ring. The ring A[X1, . . . , Xn] denotes the polynomial
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ring in n variables X1, X2, . . . , Xn over A and consists of elements of the form,

f =

n∑

i=1

λi1...inX
i1
1 . . . X in

n , λi1...in ∈ A, (i1, . . . , in) ∈ Zn+.

An expression X i1
1 . . .X in

n is called a monomial and i1 + · · · + in is called its degree.
A typical element of this ring, called a polynomial, is a finite A-linear combination of
monomials. A polynomial which is a finite A-linear combination of monomials each of
degree d is called a homogeneous polynomial of degree d. Clearly, any polynomial
is a finite sum of homogeneous polynomials. The degree of a polynomial is defined
to be the maximum of the degrees of its homogeneous components.

Factor Rings: (residue class rings) If I is an ideal in a ring A, then the collection
of cosets {x + I |x ∈ A} form a ring under the induced operation from A. This ring is
called the factor ring or the residue class ring of A modulo I and is denoted by A/I.
The natural homomorphism φ : A → A/I, given by x 7→ x + I, shows that there is a
one-to-one correspondence between ideals of A/I and the ideals of A which contain I,
given by K → φ(K) and J → φ−1(J).

Definition 1.1.1 A proper ideal p of a ring A is said to be a prime ideal if ab ∈ p

implies that either a ∈ p or b ∈ p.

Definition 1.1.2 An ideal m of A is said to be maximal if m is not properly contained
in any other ideal of A.

Remark 1.1.3 An ideal p is prime if and only if A/p is an integral domain. An ideal m

of A maximal if and only if A/m is a field. In particular maximal ideals are prime. If p

is a prime ideal of a ring A and I, J ⊂ A are ideals such that IJ ⊂ p, then either I ⊂ p

or J ⊂ p. For, if I * p and J * p, then there exists a ∈ I, a /∈ p and b ∈ J , b /∈ p, but
ab ∈ p. This is a contradiction.

Definition 1.1.4 Let p be a prime ideal of a ring A which contains an ideal I. Then
p is said to be minimal over I if I ⊂ p′ ⊆ p for any prime ideal p′ of A implies that
p = p′. We call a prime ideal p of A minimal if p is minimal over the zero ideal.

Definition 1.1.5 The set of all prime ideals of a ring A is called the Spectrum of A
and is denoted by Spec(A). Let I be an ideal of A and V (I) = {p ∈ Spec(A) | I ⊂ p}.
It can be shown that the collection {V (I) | I ⊂ A} are closed subsets of Spec(A) with
respect to a certain topology on Spec(A) called the Zariski Topology.

Notation. 1.1.6 The set of all maximal ideals of a ring A is a subset of Spec(A). It is
denoted by Max(A).

Definition 1.1.7 A ring A is said to be a local ring if A has a unique maximal ideal.
A ring A is said to be semilocal if A has only finitely many maximal ideals.

Definition 1.1.8 Let A be a ring. By a chain of prime ideals of A we mean a finite
strictly increasing sequence of prime ideals p0 ( p1 ( · · · ( pn of A. The integer n is
called the length of the chain. The Krull dimension of A is the supremum of the
lengths of chains of prime ideals of A. It is denoted by dim(A).

In this paper, by dim(A) we mean the Krull dimension of A.
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Definition 1.1.9 Let A be a ring. If p ∈ Spec(A), then the height of p, denoted by
ht(p), is defined to be the supremum of the lengths of chains of prime ideals p0 ( p1 (
· · · ( pr = p which end at p. For any ideal I ⊆ A, we define ht(I) = Inf ht(p), where
infimum is taken over all prime ideals of A which are minimal over I. Note that ht(p)
could be infinite.

Definition 1.1.10 Let A be a ring. A a subset S of A is said to be multiplicative
closed if 1 ∈ S, 0 /∈ S and a, b ∈ S implies that ab ∈ S.

Example 1.1.11 Let A be a ring and a ∈ A be such that an 6= 0 for every natural
number n. Then S = {1, a, a2, . . . } is a multiplicative closed set.

Now we give a third method of constructing new rings from old ones viz.

Localization: This is a construction analogous to the construction of the field of ratio-
nals Q from the ring of integers Z. For any ring A and a multiplicative closed subset S
of A we define the ring of fractions S−1A, consisting of elements of the form a

s , where
a ∈ A and s ∈ S, with addition and multiplication defined as follows:

(a/s) + (b/t) = (at+ bs)/st; (a/s)(b/t) = ab/st.

The notion of equality in S−1A is understood in the following way: a
s = b

t ⇔ r(at−bs) = 0
for some r ∈ S.

Some facts on localisation:

1. There is a ring homomorphism f : A → S−1A defined by f(x) = x/1. In general
f is not injective. Clearly, f is injective ⇔ S does not contain any zero divisors.

2. Let g : A → B be a ring homomorphism such that g(s) is unit in B for all s ∈ S.
Then there exists a ring homomorphism h : S−1A → B such that g = h ◦ f , where h is
defined as, h(a/s) = g(a)g(s)−1 and f is as in (1).

3. If I ⊂ A is an ideal, then S−1I = { is |i ∈ I, s ∈ S} is an ideal of S−1A. Any ideal
of S−1A is of the form S−1I, where I ⊂ A is an ideal.

4. The prime ideals of S−1A are in bijective correspondence with the prime ideals of
A which does not meet S. This correspondence is given by sending p ∈ Spec(A), which
satisfies the property that p ∩ S = Φ, to S−1p and sending an ideal q ∈ Spec(S−1A) to
the prime ideal f−1(q) of A (where f is as in (1)).

The surjectivity of this correspondence is easy to prove. We prove the injectivity by
contradiction. Let p1, p2 ∈ Spec(A) be such that p1 6= p2, p1 ∩S = p2 ∩S = Φ. We show
that S−1p1 6= S−1p2. Without loss of generality we may assume that p1 * p2. Then we
show that if a ∈ p1 − p2, a/s /∈ S−1p2. Assume to the contrary let a

s = b
t for some b ∈ p2

and t ∈ S. This means there exists r ∈ S such that r(at− bs) = 0. This implies rat ∈ p2.
Since rt /∈ p2, a ∈ p2, a contradiction. Conversely, if S−1p1 6= S−1p2, then obviously
p1 6= p2. In particular, if p1 ( p2 and p1 ∩ S ⊂ p2 ∩ S = Φ, then S−1p1 ( S−1p2. Thus,
the above correspondence is inclusion preserving.

Let A = Z, S = {1, 3, 32, . . . }, I1 = 2Z, I2 = 6Z I3 = 18Z. Then S−1I1 = S−1I2 =
S−1I3 even though I1 ∩ S = I2 ∩ S = I3 ∩ S = Φ. Note however that I2 and I3 are not
prime ideals.

5. If I, J are ideals of A, then S−1(I + J) = S−1I + S−1J , S−1(IJ) = S−1I.S−1J ,
S−1(I ∩ J) = S−1I ∩ S−1J , and S−1I = S−1A if and only if I ∩ S 6= Φ.

6. If A is a domain and S = A−{0}, then S−1A is the quotient field of A. For any
prime ideal p of A and S = A− p, S−1A is denoted by Ap and is called the localization
of A at the prime ideal p. The ring Ap is a local ring with maximal ideal S−1p.
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Remark 1.1.12 From the above discussion it is clear that for a prime ideal p of a ring
A, ht(p) = dim(Ap).

Definition 1.1.13 An element a of a ring A is said to be nilpotent if an = 0 for some
n > 0.

Notation. 1.1.14 We write Aa for S−1A, and Ia for S−1I, where S = {an|n ≥ 0},
where a is not nilpotent.

Localization of Modules: Let A be a ring, M an A-module and S ⊂ A a multiplicative
closed subset. Then we can define an S−1A-module denoted by S−1M . First, we define
a relation ≡ on M × S as follows:

(m, s) ≡ (m′, s′) ⇔ t(sm′ − s′m) = 0 for some t ∈ S.

It can easily be shown that ≡ is an equivalence relation. The equivalence class of (m, s)
is denoted by m/s and the set of equivalence classes is denoted by S−1M . Now we define
addition of two elements m/s,m′/s′ ∈ S−1M by m/s + m′/s′ = (s′m + sm′)/ss′ and
multiplication of a scalar a/s ∈ S−1A and m′/s′ ∈ S−1M by (a/s)(m′/s′) = (am′)/(ss′).
It is easy to check that under these operations S−1M is an S−1A-module. Now if p is a
prime ideal and S = A− p, then the Ap-module S−1M is denoted by Mp and it is called
the localization of M at p.

Let M,N be two A-modules and f ∈ HomA(M,N). Define S−1f : S−1M → S−1N
by (S−1f)(m/s) = f(m)/s. It can be easily seen that S−1f is well-defined and that it
belongs to HomS−1A(S−1M,S−1N).

Definition 1.1.15 Let A be a ring. A sequence

0 // M ′
f

// M
g

// M ′′ // 0

is of A-modules is said to be exact if Ker(g) = Im(f), f is injective and g is surjective.

Proposition 1.1.16 Let A be a ring and

0 // M ′
f

// M
g

// M ′′ // 0

an exact sequence of A-modules. Then

0 // S−1M ′
S−1f

// S−1M
S−1g

// S−1M ′′ // 0

is an exact sequence of S−1A-modules.

Proposition 1.1.17 Let A be a ring and M , N be two A-modules.Then

S−1(M ⊕N) ∼= S−1M ⊕ S−1N.

In particular, if M = An = A⊕A⊕ · · · ⊕A (n times), then S−1M ∼= (S−1A)n.
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1.2 Prime Avoidance Lemma

Lemma 1.2.1 (Prime Avoidance Lemma) Let A be a ring and I ⊂ A an ideal.
Suppose I ⊂ ∪ni=1pi, where pi ∈ Spec(A). Then I ⊂ pi for some i, 1 ≤ i ≤ n.

Proof. To prove the lemma it suffices to show the following implication:

I * pi, ∀i, 1 ≤ i ≤ n⇒ I * ∪ni=1pi.

We shall show this by induction on n. Clearly, this is true for n = 1. By induction, for
each i, there exists xi ∈ I such that xi /∈ pj for i 6= j. If xi /∈ pi, then we are through.
If xi ∈ pi, then consider the element y =

∑n
i=1 x1 . . . xi−1x̂ixi+1 . . . xn. Clearly, y /∈ pi,

1 ≤ i ≤ n and y ∈ I. This proves the lemma. 2

Lemma 1.2.2 Let A be a ring, p1, . . . , pr ∈ Spec(A) and I =
〈
a1, . . . , an

〉
be an ideal of

A such that I * pi, 1 ≤ i ≤ r. Then there exist b2, . . . , bn ∈ A such that the element

c = a1 + a2b2 + · · · + anbn /∈ ∪ri=1pi.

Proof. Without any loss of generality we may assume that pi * pj for i 6= j. We prove
the lemma by induction on r. Suppose by induction we have chosen c2, . . . , cn ∈ A such
that d1 = a1 + c2a2 + · · · + cnan /∈ ∪r−1

i=1 pi. If d1 /∈ pr, then we are through by taking
bi = ci, 2 ≤ i ≤ r. So we assume that d1 ∈ pr.

If a2, . . . , an all belong to pr, then d1 −∑n
i=2 aici = a1 ∈ pr. But, this will imply

that I ⊂ pr. Thus, at least one of the ai /∈ pr, 2 ≤ i ≤ n. Without loss of generality we
assume that a2 /∈ pr. Since pi * pj for i 6= j, we can choose x ∈ ∩r−1

i=1 pi such that x /∈ pr.
Then c = d1 + xa2 = a1 + a2b2 + · · · + anbn /∈ ∪ri=1pi. This proves the lemma. 2

1.3 Nakayama Lemma

Definition 1.3.1 The intersection of all the maximal ideals of a ring A is called the
Jacobson radical of A. We denote it by Jac(A).

Remark 1.3.2 Let x ∈ Jac(A). Then for every a ∈ A, 1 − ax is a unit of A.

Lemma 1.3.3 (First version of Nakayama Lemma) Let A be a ring, M a finitely
generated A-module and I be an ideal of A such that IM = M . Then there exists an
element a ∈ I such that (1 − a)M = 0.

Proof. Suppose M 6= 0 and m1, . . . ,mr is a generating set of M . Since IM = M ,
mi =

∑r
j=1 λijmj , where λij ∈ I. This implies that




1 − λ11 −λ12 · · · −λ1r

−λ21 1 − λ22 · · · −λ2r

· · · · · · · · · · · ·
−λr1 −λr2 · · · 1 − λrr







m1

m2

.
mr


 = 0.

Let

α =




1 − λ11 −λ12 · · · −λ1r

−λ21 1 − λ22 · · · −λ2r

· · · · · · · · · · · ·
−λr1 −λr2 · · · 1 − λrr


 .

Multiplying the above equation by adj(α) we get det(α)M = 0. Since α = Ir modulo I,
det(α) = 1 modulo I. So, there exists a ∈ I such that (1 − a)M = 0. This proves the
lemma. 2
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Lemma 1.3.4 (Second version of Nakayama Lemma) Let A be a ring, M a finitely
generated A-module and I ⊂ A an ideal of A contained in Jacobson radical of A. Then
IM = M implies M = 0.

Proof. By Lemma 1.3.3, there exists an element a ∈ I such that (1− a)M = 0. Since I
is contained in Jacobson radical of A, (1 − a) is a unit of A, so that M = 0. Hence the
lemma. 2

Corollary 1.3.5 Let A be a ring, M a finitely generated A module, N an A-submodule
of M . Let I be an ideal of A contained in Jacobson radical of A. If M = N + IM then
M = N .

Proof. The proof follows by applying 1.3.5 to the module M/N . 2

1.4 Noetherian Rings and Modules

In this section we prove some basic results on Noetherian rings and modules.
Let A be a ring andM be an A-module. Then the following statements are equivalent:
1. Any non empty collection of submodules of M has a maximal element.
2. Any ascending chain of submodules of M is stationary.
3. Every submodule of M is finitely generated.

Definition 1.4.1 Let A be a ring. An A-module M is called Noetherian if it satisfies
one of the above equivalent conditions.

Definition 1.4.2 A ring A is said to be Noetherian if A is Noetherian as an A-module.

Proposition 1.4.3 Let A be ring, M an A-module, and N an A-submodule of M . Then
M is Noetherian if and only if N and M/N are Noetherian.

Proof. It is clear that if M is Noetherian then N and M/N are Noetherian. So, we
prove the converse.

Assume N and M/N are Noetherian. Let K be any submodule of M . We show
that K is finitely generated. Since (N + K)/N is a submodule of M/N , it is finitely
generated. Let bar denote the reduction modulo N . Let {k1, . . . , kn} be a generating
set of (N +K)/N , where ki ∈ K, 1 ≤ i ≤ n. Let N1 = K ∩N . Since N is Noetherian,
N1 is finitely generated. Let q1, . . . , qr generate N1. Now, for x ∈ K, x =

∑n
i=1 λiki

for some λi ∈ A. Therefore, the element x −∑n
i=1 λiki belongs to K ∩ N and hence

x −∑n
i=1 λiki =

∑r
j=1 µjqj , µi ∈ A. This implies that K =

〈
k1, . . . , kn, q1, . . . , qr

〉
,

proving the corollary. 2

Corollary 1.4.4 Let A be a ring and Mi, 1 ≤ i ≤ n be A-modules. Then the A-module
⊕ni=1Mi is Noetherian ⇔ each Mi is a Noetherian A-module.

Corollary 1.4.5 Any homomorphic image of a Noetherian ring is Noetherian.

Corollary 1.4.6 Let A be a Noetherian ring and M be a finitely generated A-module.
Then M is Noetherian.

Theorem 1.4.7 Let A be a Noetherian ring. Then A[X ] is Noetherian.
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Proof. ( See [33] ) Let I ⊂ A[X ] be an ideal. We want to show that I is finitely generated.
Let us choose f1(X) ∈ I of smallest degree. If I =

〈
f1(X)

〉
, we are through. If not,

we choose f2(X) ∈ I such that f2(X) /∈
〈
f1(X)

〉
and is of smallest degree amongst all

polynomials in I which are not in
〈
f1(X)

〉
. If I =

〈
f1(X), f2(X)

〉
, then we are through

as before. If not, we choose f3(X) ∈ I such that f3(X) has the smallest degree amongst
all polynomials of I which are not in

〈
f1(X), f2(X)

〉
. Proceeding in this way we can

choose fi(X) for i > 0.
Let ai be the leading coefficient of the polynomial fi(X). Since A is Noetherian, the

increasing chain of ideals

〈
a1

〉
⊂
〈
a1, a2

〉
⊂ · · ·

〈
a1, . . . , ar

〉
⊂ · · ·

terminates. Suppose
〈
a1, . . . , an

〉
=
〈
a1, . . . , an, an+1

〉
= · · · for some n > 0. We claim,

I =
〈
f1, . . . , fn

〉
. Assume to the contrary that fn+1(X) = an+1X

m+lower degree terms
is not in the ideal generated by f1, . . . , fn. Let an+1 =

∑n
i=1 λiai. Let us define g(X) =

fn+1(X) −∑n
i=1 λifi(X)Xdeg(fn+1)−deg(fi). Thus, g(X) is a polynomial of degree less

than that of fn+1(X) and is not in the ideal generated by f1, . . . , fn. This contradicts
the choice of fn+1(X). Hence the claim. This proves the theorem. 2

Definition 1.4.8 Let A be a ring and I be an ideal of A. The set of all elements
{x ∈ A |xn ∈ I for some n > 0} is an ideal and is called the radical of I and is denoted
by

√
I. The ideal

√
0 is called the nil radical of A and is denoted by nil(A).

Remark 1.4.9 Let A be a Noetherian ring and I ⊂ A be an ideal. Then, since
√
I is

finitely generated, there exists an integer n > 0 such that (
√
I)n ⊂ I.

Lemma 1.4.10 Let A be a ring, S a multiplicative closed subset of A. If I is an ideal
of A maximal with respect to the property that I ∩ S = Φ, then I is a prime ideal.

Before we prove the lemma we make the following remark.

Remark 1.4.11 The ideal
〈
0
〉

satisfies the property that
〈
0
〉
∩ S = Φ. Therefore, by

Zorn’s lemma an ideal I with the above property exists.

Proof of Lemma 1.4.10. Suppose I is not prime. Then there exists a, b ∈ A such that
a, b /∈ I but ab ∈ I. By assumption,

〈
I, a
〉
∩ S 6= Φ and

〈
I, b
〉
∩ S 6= Φ. Let us choose

x = λ + at ∈
〈
I, a
〉
∩ S, where λ ∈ I, t ∈ A and y = µ + br ∈

〈
I, b
〉
∩ S, where µ ∈ I,

r ∈ A. Since ab ∈ I, the element xy = (λ+ at)(µ+ br) = λµ+ λbr + µat+ abrt ∈ I ∩ S.
This is a contradiction. This proves the lemma. 2

Lemma 1.4.12 Let A be a ring and I ⊂ A be an ideal. Then
√
I = ∩ p, where intersec-

tion is taken over all prime ideals of A containing I.

Proof. We prove this when I = 0, the general case being similar. Let a ∈
√

0. Then
an = 0 for some n > 0. Hence an ∈ p for all p ∈ Spec(A), so that a ∈ p for all
p ∈ Spec(A).

Conversely, let a ∈ ∩ p for all p ∈ Spec A. Suppose a is not nilpotent. Let S =
{1, a, a2, . . . }. Then S is a multiplicative closed subset of A and hence by Lemma 1.4.10,
there exists a prime ideal q of A such that q ∩ S = Φ. But a ∈ q ∩ S showing that
q ∩ S 6= Φ, a contradiction. Hence the lemma follows. 2

Proposition 1.4.13 Let A be Noetherian ring, I ⊂ A an ideal. Then
√
I is a finite

intersection of prime ideals of A.
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Proof. Suppose the proposition is false. Let S be the family of ideals I of A such that√
I is not a finite intersection of prime ideals.
Since A is Noetherian, S has a maximal element, say I0. If I0 is a prime ideal, then

I0 =
√
I0 and hence the proposition follows. So we assume that I0 is not prime. So,

there exist a, b ∈ A such that a, b /∈ I0 but ab ∈ I0. Since I0 (
〈
I0, a

〉
and I0 (

〈
I0, b

〉
,√〈

I0, a
〉

and
√〈

I0, b
〉

are finite intersections of prime ideals.

We claim,
√
I0 =

√〈
I0, a

〉
∩
√〈

I0, b
〉
. It would then follow that

√
I0 is also a finite

intersection of prime ideals. This contradicts the assumption on I0.

Proof of the claim : Clearly,
√
I0 ⊂

√〈
I0, a

〉
∩
√〈

I0, b
〉
. To prove the other part

let x ∈
√〈

I0, a
〉
∩
√〈

I0, b
〉
. Then xn ∈

〈
I0, a

〉
, xm ∈

〈
I0, b

〉
for some m,n > 0. Since

ab ∈ I0, x
m+n ∈ I0. This implies that x ∈

√
I0. Hence the claim. This completes the

proof. 2

Proposition 1.4.14 Let A be a Noetherian ring, I ⊂ A an ideal of A. If
√
I = ∩ni=1pi

and n is the least integer with respect to this property, then the pi’s are exactly those
prime ideals of A which are minimal over I.

Proof. Let n be the least integer with respect to the property that
√
I = ∩ni=1pi. If

for some i, pi is not minimal over I, then there exists a prime ideal q of A such that
I ⊂ q ( pi. Taking radicals it follows that ∩ni=1pi ⊂ q ⊂ pi. Hence pr ⊂ q ( pi for some
r. This contradicts the minimality of n. Hence the pi’s are minimal over I.

Conversely, let p ∈ Spec(A) be minimal over I. Then I ⊂ p and taking radicals it
follows that I ⊂ pj ⊂ p for some j, 1 ≤ j ≤ n. Since p is minimal over I, p = pj. This
proves the proposition. 2

Corollary 1.4.15 For any ideal I of a Noetherian ring A there are only finitely many
prime ideals of A minimal over I.

1.5 Artinian Rings and Modules

In this section we prove basic results about Artinian rings and modules.

Definition 1.5.1 Let A be a ring. An A-module M is said to be Artinian if one of the
following equivalent conditions holds.

1. Any non empty collection of submodules of M has a minimal element.
2. Any descending chain of submodules of M is stationary.

Definition 1.5.2 A ring A is said to Artinian if it is Artinian as an A-module.

Some properties of Artinian Modules:
1. If M is an A-module and N is a submodule of M , then M is Artinian if and only

if N and M/N are Artinian.
2. For A-modules M1, . . . ,Mn, ⊕ni=1Mi is Artinian if and only if each Mi is Artinian.
3. If A is a Artinian ring, then any finitely generated A-module is Artinian.

Proposition 1.5.3 An Artinian domain is a field.

Proof. Let A be an Artinian domain and x ∈ A be a non zero element. Since A is
Artinian, the decreasing chain of ideals

〈
x
〉
⊃
〈
x2
〉
⊃ · · · , terminates i.e. there exists

9



an integer n > 0 such that
〈
xn
〉

=
〈
xn+1

〉
· · · . Therefore, xn ∈

〈
xn+1

〉
and hence there

exists y ∈ A such that xn = xn+1y. Since A is a domain, and x 6= 0, it follows that
xy = 1, showing that x is a unit of A. Hence the proposition follows. 2

Corollary 1.5.4 In an Artinian ring every prime ideal is maximal.

Proof. Let A be an Artinian ring, p a prime ideal of A. Then A/p is an Artinian domain
and hence is a field. Therefore, p is a maximal ideal of A. 2

Proposition 1.5.5 An Artinian ring is semilocal.

Proof. Let A be an Artinian ring. Suppose to the contrary {mi}i∈N, is an infinite set of
distinct maximal ideals of A. Since A is a Artinian ring the decreasing chain of ideals

m1 ⊃ m1 ∩ m2 ⊃ · · ·

will stop, so that there exists a n > 0 such that ∩ni=1mi = ∩n+1
i=1 mi. This implies that

∩ni=1mi ⊂ mn+1. Hence mk ⊂ mn+1 for some k ≤ n. But mi’s are maximal, so that
mk = mn+1. This contradicts our assumption that the mi’s are distinct. Therefore, A
has only finitely many maximal ideals. This completes the proof. 2

Proposition 1.5.6 In an Artinian ring the nil radical is nilpotent.

Proof. Let A be a Artinian ring and N be the nil radical of A. Consider the decreasing
chain N ⊃ N2 ⊃ · · · . Since A is Artinian, there exists an integer k > 0 such that
Nk = Nk+1 = · · · = a (say). If a = {0}, we are done. Assume that a 6= {0}. Let

S = {b|b is an ideal of A, ba 6= 0}

Note that aa = NkNk = N2k 6= 0. Hence a ∈ S, so that S is non empty and since
A is Artinian, S has a minimal element, say I. Thus, there exists x ∈ I such that
xa 6= {0}. Now

〈
x
〉
⊂ I and therefore, by the minimality of I it follows that

〈
x
〉

= I.

But (xa)a = xa2 = xa 6= 0. Since xa ⊂ I =
〈
x
〉
, by the minimality of I it follows that

xa =
〈
x
〉
, so that x = xy for some y ∈ a. Therefore, x = xy = xy2 = · · · = xyn = · · · .

Now, y ∈ a implies that y is nilpotent. Therefore, yn = 0 for some n. This implies x = 0.
(Alternatively, (1 − y)x = 0. But, 1 − y is unit and hence x = 0). Now, since x = 0,
I = {0}. This is a contradiction. Hence the proposition follows. 2

Proposition 1.5.7 For a vector space V over a field k the following are equivalent.
1. V is a finite dimensional vector space over k.
2. V is a Noetherian k-module.
3. V is an Artinian k-module.

Proof. (1) ⇒ (2): Since V is a finite dimensional vector space over k, every subspace of
V is finite dimensional. This implies that V is a Noetherian k-module.

(2) ⇒ (1): We assume to the contrary that V is Noetherian k-module but not fi-
nite dimensional. Then we can find an infinite set of linearly independent vectors
{e1, e2, . . . , en, . . . } of V . This gives a strictly increasing chain of subspaces of V viz.
ke1 ⊂ ke1 + ke2 ⊂ ke1 + ke2 + ke3 ⊂ · · · . This contradicts the fact that V is Noetherian.
Hence V is finite dimensional.

(1) ⇒ (3): Suppose (1) is true but V is not Artinian. Let W = W0 ⊃ W1 ⊃ W2 ⊃ · · ·
be a strictly decreasing chain of subspaces of V . Then dim(W0) > dim(W1) > · · · . But,
since V is finite dimensional, the chain stops, showing that V is Artinian.
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(3) ⇒ (1): If V is not finite dimensional, as before we can choose a linearly independent
set of vectors {e1, e2, . . . , en, . . . } of V . Then

∑
∞

i=1 kei ⊃
∑

∞

i=2 kei ⊃ · · · is a strictly de-
creasing chain of subspaces of V , contradicting the fact that V is an Artinian k-module.
Hence V is finite dimensional. 2

Lemma 1.5.8 Let M = M0 ) M1 ) · · · ) Mn =
〈
0
〉

be a filtration of A-modules. Then
M is a Noetherian (Artinian) A-module if and only if each Mi/Mi+1 is a Noetherian
(Artinian) A-module for 0 ≤ i ≤ n− 1.

Lemma 1.5.9 Let A be a ring and m1,m2, . . . ,mn be maximal ideals of A (which are
not necessarily distinct). Let M be an A-module. Suppose m1m2 · · ·mnM =

〈
0
〉
. Then

M is a Noetherian A-module if and only if M is an Artinian A-module.

Proof. Let M be a Noetherian A-module. We consider the filtration M = M0 ) M1 )
· · · ) Mn =

〈
0
〉
, where Mi = m1m2 · · ·miM . Since M is Noetherian A-module Mi/Mi+1

is a Noetherian A-module for every i. Hence Mi/Mi+1 is a Noetherian A/mi-module for
every i. Using 1.5.7, it follows that Mi/Mi+1 is an Artinian A/mi-module for every i.
HenceMi/Mi+1 is an Artinian A-module for all i. Therefore, M is an Artinian A-module.
The other assertion can proved similarly. �

Corollary 1.5.10 A ring A is Artinian if and only if it is Noetherian and dim(A) = 0.

Proof. Suppose A is Artinian. By 1.5.4, every prime ideal of A is maximal. By 1.5.5,
A has only finitely many maximal ideals. Let m1, . . . ,mk be the finitely many prime
(maximal) ideals of A. Then by 1.5.6, there exists n > 0 such that (∩ki=1mi)

n =
√

0
n

=〈
0
〉
. Now, by 1.5.9, A is Noetherian. The converse can be proved similarly. 2

Definition 1.5.11 Let A be a ring. An A-module M is said to be simple if M 6= 0 and
the only submodules of M are

〈
0
〉

and M .

Remark 1.5.12 A simple A-module is both Artinian and Noetherian.

Remark 1.5.13 Let A be a ring and M be a simple A-module. Let m be a non zero
element of M . We consider the A-linear map g : A → M which sends 1 to m. Since
Im(g) 6= 0 and M is simple, g is surjective. Since A/ker(g) ∼= M is simple, ker(g) is
a maximal ideal of A. Thus, a simple A-module is isomorphic to A/m, where m is a
maximal ideal of A.

Definition 1.5.14 Let A be a ring and M be an A-module. Then M is said to be of
finite length if there exists a filtration M = M0 ) M1 ) M2 ) · · · ) Mn =

〈
0
〉
, where

Mi/Mi+1 is a simple A-module for each i. In this case n is called the length of the
filtration. Such a filtration is called a Jordan Hölder series or composition series of
length n. An A-module M is said to be of finite length if it has a Jordan Hölder series.

Theorem 1.5.15 Let A be a ring and M be an A-module. Suppose M has a composition
series of length n. Then every composition series of M has length n.

Proof. Let lA(M) = least length of a Jordan Hölder series of M .(Convention: lA(M) =
∞ ⇔M has no Jordan Hölder series.) We split the proof into two parts.

Step 1. We claim that if N is a A-submodule of M then lA(N) ≤ lA(M). Let M =
M0 ) M1 ) · · · ) Mn = 0 be a composition series of M of minimum length. Let
Ni = N ∩Mi. Since Ni−1

Ni
⊂ Mi−1

Mi
and Mi−1

Mi
is a simple module, either Ni−1

Ni
= Mi−1

Mi
or
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Ni−1 = Ni. Thus, removing repeated terms we obtain a composition series of N and we
get lA(N) ≤ lA(M). Now, if N ( M , we show that the above inequality is actually strict.

For, if lA(N) = lA(M), then Ni−1

Ni
= Mi−1

Mi
for all i = 1, 2, . . . , n. Since Mn =

〈
0
〉

= Nn,
Mn−1 = Nn−1 and hence Mn−2 = Nn−2 and so on. Thus M = N , this is a contradiction.
this proves the claim.

Step 2. Let M = M0 ) M1 ) · · · ) Mr =
〈
0
〉

be a chain of submodules of M of length
r. Then from Step 1, it follows that lA(M) > lA(M1) > · · · > lA(Mr) = 0. This implies
that lA(M) ≥ r.

Step 3. It follows from Step 2, that for any composition series of M of length r,
r ≤ lA(M). Therefore, by the definition of lA(M), lA(M) = r. Hence all composition
series of M have the same length. 2

Proposition 1.5.16 An A-module M has a Jordan Hölder series if and only if M is
both Noetherian and Artinian as an A-module.

Proof. Let M = M0 ) M1 ) M2 ) · · · ) Mn =
〈
0
〉

be a Jordan Hölder series of
M . Since Mi/Mi+1 is simple A module it follows from 1.5.12 that Mi/Mi+1 is both an
Artinian and Noetherian A-module for i = 1, . . . , n. So by 1.5.8, M is both Artinian and
Noetherian.

Conversely, suppose M is both Artinian and Noetherian. Since A is Noetherian, M
contains a maximal proper submodule, say M1. But, since M1 is also Noetherian it has
a maximal proper submodule, say M2. Iterating this process we get a descending chain
M = M0 ) M1 ) M2 ) M3 · · · with Mi/Mi+1 simple. Since M is an Artinian A-module
this chain stops. Therefore, Mn =

〈
0
〉

for some n > 0. Hence M has a Jordan Hölder
series. 2

Proposition 1.5.17 Let A be a ring, M an A-module and N ⊂ M a submodule. Then
M has finite length if and only if N and M/N have finite length and in this case lA(M) =
lA(N) + lA(M/N).

Proof. The first part of the proof follows from 1.5.16. The second part also follows
easily. 2

1.6 Krull’s Principal Ideal Theorem and its Generalisation

In this section we prove Krull’s Principal Ideal theorem.

Theorem 1.6.1 (Krull’s Principal Ideal Theorem). Let A be a Noetherian ring,
p a prime ideal of A such that p is minimal over the ideal

〈
a
〉

for some a ∈ A. Then
ht(p) ≤ 1.

This theorem is an easy consequence of the next theorem.

Note 1.6.2 This theorem fails due to the deficiency of Noetherian property of the ring.
For, consider the ring A = Z[2X, 2X2, 2X3, . . . ]. Then A is a two dimentional ring
as A[1/2] = A[1/2, X ] which is not Noetherian. The maximal ideal

〈
2, 2X, 2X2, . . .

〉

is minimal over the principal ideal
〈
2
〉

and hence is of height 2. But it is not finitely
generated.

Theorem 1.6.3 Let (A,m) be a Noetherian local domain. Suppose m is minimal over
the ideal

〈
a
〉
, where a 6= 0. Then ht(m) = 1, i.e. Spec(A) = {

〈
0
〉
,m}.
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Motivation. If one knows that Spec(A) = {
〈
0
〉
,m}, it would follow that for any non

zero element b ∈ m, m is the only prime ideal minimal over bA. It would hence follow
that

√
bA = m. This implies that mn ⊂ bA for some natural number n > 0 and hence

for any non zero element a ∈ m, an ∈ bA. This motivates the following assertion. Let
(A,m) be a Noetherian local domain such that m minimal over

〈
a
〉
, where a 6= 0. Let

b ∈ m be a non zero element. Then for sufficiently large n,
〈
an, b

〉
A =

〈
an+1, b

〉
A = bA.

We prove this assertion in 1.6.8 & 1.6.9 and deduce 1.6.3 as a consequence.

Lemma 1.6.4 Let A be a ring and 0 −→M ′ −→M −→M ′′ −→ 0 be an exact sequence
of A-modules. Suppose I ⊂ A is an ideal. Then the following sequence of A-modules is
exact:

0 −→ M ′

IM ∩M ′
−→ M

IM
−→ M ′′

IM ′′
−→ 0

Proof. By hypothesis, M/M ′ ∼= M ′′. Therefore, using the fact IM ′′ ∼= I(M/M ′) ∼=
(IM +M ′)/M ′, we get

M/IM

M ′/IM ∩M ′

∼= M/IM

M ′ + IM/IM
∼= M

M ′ + IM
∼= M/M ′

(M ′ + IM)/M ′

∼= M ′′

IM ′′
.

Hence the lemma follows. 2

Note 1.6.5 Let A be a ring and M be a torsion free A-module. Let c ∈ A, c 6= 0 and
N be a A-submodule of M . Then M/N ≃ cM/cN . The map sending m to cm, is an
isomorphism. Indeed, if cm ∈ cN , then cm = cn, where n ∈ N ⇒ c(m − n) = 0 ⇒
m − n = 0, as M is a torsion free A-module. This implies that m = n ∈ N ⇒ λc is
injective.

We state the following well known lemma, cf. [32].

Lemma 1.6.6 (Artin-Rees Lemma) Let I, J be two ideals of a Noetherian ring A.
Then there exists a natural number m such that for all n ≥ m, (In+1 ∩ J) = I(In ∩ J).

It is obvious that I(In ∩ J) ⊂ In+1 ∩ J . The other inclusion is non trivial. We prove
the following special case.

Lemma 1.6.7 Let A be a Noetherian ring and a, b ∈ A. Then there exists a natural
number m such that for all n ≥ m, an+1A ∩ bA = a(anA ∩ bA).

Proof. Let Ji = {µ ∈ A |µai ∈ bA}. Then J1 ⊂ J2 ⊂ · · · is an increasing chain of ideals
of A. Since A is Noetherian, there exists an integer m > 0 such that Jm = Jm+1 = · · · .
Let n ≥ m and c ∈ an+1A ∩ bA. Then c = µan+1 ∈ bA. This implies that µ ∈ Jn+1 ⇒
µ ∈ Jn ⇒ µan ∈ bA. Therefore, c = µan+1 = a(µan) ∈ a(anA ∩ bA). Hence the lemma
follows. 2

Theorem 1.6.8 Let (A,m) be a Noetherian local domain, m be minimal over the ideal〈
a
〉
, for some non zero element a ∈ A. Let b ∈ m be a non zero element. Then for n ≥ 1,

the A-module A/
〈
an, b

〉
A has finite length and for sufficiently large n

lA
(
A/
〈
an, b

〉
A
)

= lA
(
A/
〈
an+1, b

〉
A
)
. (1)

Proof. We first prove that lA(A/anA) <∞ for n ≥ 1.
Since A is Noetherian, A/

〈
an
〉

is Noetherian. If p is a prime ideal of A containing an,

then a ∈ p ⊂ m. Since m is minimal over
〈
a
〉
, p = m. Thus Spec((A/anA)) = {m}. This
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implies that every prime ideal of A/anA is maximal. Hence A/anA is both Artinian and
Noetherian (see 1.5.10). Therefore, lA(A/anA) <∞.

Now we proceed to prove (1). Applying Lemma 1.6.4 to the exact sequence of A-
modules

0 −→ bA −→ A −→ A/bA −→ 0

we get exact sequences

0 −→ bA

bA ∩ anA −→ A

anA
−→ A〈

an, b
〉
A

−→ 0

and

0 −→ bA

bA ∩ an+1A
−→ A

an+1A
−→ A〈

an+1, b
〉
A

−→ 0.

Since lA (A/anA) is finite for all n ≥ 1, we have

lA

(
A

anA

)
= lA

(
bA

anA ∩ bA

)
+ lA

(
A〈

an, b
〉
A

)

and

lA

(
A

an+1A

)
= lA

(
bA

an+1A ∩ bA

)
+ lA

(
A〈

an+1, b
〉
A

)
.

Therefore, we have

lA

(
A〈

an+1, b
〉
A

)
− lA

(
A〈

an, b
〉
A

)
= lA

(
A

an+1A

)
− lA

(
A

anA

)

−lA
(

bA

an+1A ∩ bA

)
+ lA

(
bA

anA ∩ bA

)
(2)

In order to prove that the difference is zero for sufficiently large n, we consider the exact
sequence

0 −→ anA

an+1A
−→ A

an+1A
−→ A

anA
−→ 0

which shows that

lA

(
A

an+1A

)
− lA

(
A

anA

)
= lA

(
anA

an+1A

)
= lA

(
A

aA

)
by 1.6.5 (3)

Also, we have the following exact sequence

0 −→ abA

bA ∩ an+1A
−→ bA

bA ∩ an+1A
−→ bA

abA
−→ 0. (4)

Using Lemma 1.6.7, we choose natural number m such that for all n ≥ m,

an+1A ∩ bA = a(anA ∩ bA). (5)

Therefore, for all n ≥ m we have,

lA

(
A〈

an+1,b
〉
A

)
− lA

(
A〈

an,b
〉
A

)
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= lA
(
A
aA

)
−
[
lA
(

bA
bA∩an+1A

)
− lA

(
abA

a(bA∩anA)

) ]
by (2), (3) and 1.6.5

= lA
(
A
aA

)
− [lA

(
bA

bA∩an+1A

)
− lA

(
abA

bA∩an+1A

)
] by (5)

= lA
(
A
aA

)
− lA

(
bA
abA

)
by (4)

= lA
(
A
aA

)
− lA

(
A
aA

)
by 1.6.5

= 0

This proves the theorem. 2

Corollary 1.6.9 Let (A,m) be a Noetherian local domain such that m is minimal over
the ideal

〈
a
〉
, for some non zero a ∈ A. If b ∈ m, 6= 0 then for sufficiently large n,〈

an, b
〉
A =

〈
an+1, b

〉
A = bA.

Proof. The sequence 0 −→
〈
an,b
〉
A〈

an+1,b
〉
A

−→ A〈
an+1,b

〉
A

−→ A〈
an,b
〉
A

−→ 0 is exact and

hence by 1.6.8, lA

( 〈
an,b
〉
A〈

an+1,b
〉
A

)
= 0 for sufficiently large n. That is, for sufficiently large

n, we get
〈
an, b

〉
A =

〈
an+1, b

〉
A. Therefore, we can write an = µan+1 + λb. Hence

an(1 − µa) = λb. Since a ∈ m, 1 − µa is unit. This implies that an ∈ bA. Hence〈
an, b

〉
A = bA.

(Alternatively, in the local ring A/bA,
〈
an
〉

=
〈
an+1

〉
. By Nakayama, it follows that〈

an
〉

= 0. This implies that an ∈ bA.) 2

Proof of Theorem 1.6.3. Since m is minimal over
〈
a
〉
,
√
aA = m. Let p ∈ Spec(A),

p 6= 0. We show that p = m. Let b ∈ p be non zero and n be a positive integer such that
an ∈ bA. Since mk ⊂ aA for some k ≥ 0, we get mkn ⊂ anA ⊂ bA ⊂ p. This implies that
m ⊂ p ⊂ m. Hence p = m. 2

Proof of Theorem 1.6.1. If a = 0, then p is minimal prime ideal of A and hence
ht(p) = 0. Assume a 6= 0. Suppose to the contrary that ht(p) ≥ 2. Let p = p0 ) p1 ) p2

be a chain of prime ideals of A. Going modulo p2 we may assume A is a domain.
Localising at p we may assume that A is a local domain. Applying 1.6.3, we get a
contradiction. This proves the lemma. 2

Theorem 1.6.10 (Krull’s dimension Theorem). Let A be a Noetherian ring. Sup-
pose p ∈ Spec(A) be such that p is minimal over

〈
a1, . . . , an

〉
. Then ht(p) ≤ n.

Proof. We prove the theorem by induction on n. The case n = 1 follows from 1.6.1. We
assume the result is true for all positive integers k < n. Assume to the contrary suppose
that ht(p) > n and p = p0 ) p1 ) · · · ) pn+1 is a chain of prime ideals of A such that
there is no prime ideal between p0 and p1. Localising at p, we may assume that A is
local with maximal ideal p. Since p = p0 is minimal over

〈
a1, . . . , an

〉
, it follows that

ai /∈ p1 for some i. Without any loss of generality we assume that a1 /∈ p1. Since there is
no prime ideal of A between p0 and p1 and

〈
A, p0

〉
is local, p0 is the only prime ideal of

A minimal over
〈
a1, p1

〉
. Therefore,

√〈
a1, p1

〉
= p0. Thus, there exists an integer t > 0

such that ati = cia1 + bi, where ci ∈ A and bi ∈ p1, 2 ≤ i ≤ n.
Let J =

〈
b2, . . . , bn

〉
. Clearly, p1 contains J , but it is not minimal over J . For, if so,

then by the induction hypothesis ht(p1) ≤ n− 1. But p1 ) · · · ) pn+1 is a chain of prime
ideals of length n. Thus, there exists q ∈ Spec(A) such that J =

〈
b2, . . . , bn

〉
⊂ q ( p1.

Let bar denote the reduction modulo q. We claim that p is minimal over
〈
a1

〉
. It

suffices to show that p is the unique prime ideal of A containing
〈
a1, q

〉
. If p̃ ∈ Spec(A)
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is such that p̃ ⊃
〈
a1, q

〉
, then p̃ ⊃

〈
a1, J

〉
. Since bi ∈ J , ati ∈ p̃, and hence ai ∈ p̃ for

2 ≤ i ≤ n. This implies that
〈
a1, . . . , an

〉
⊂ p̃ ⊂ p. Therefore, p̃ = p. This proves the

claim. Now, we have a chain of prime ideals p ) p1 ) q in A which gives a chain of
prime ideals p ) p1 ) 0 of length 2 in A/q. But, since p is minimal over

〈
a1

〉
, by 1.6.1,

ht(p) ≤ 1. This is a contradiction. Hence the theorem follows. 2

1.7 Converse of Krull’s Theorem

Theorem 1.7.1 Let A a Noetherian ring and p be a prime ideal of A. If ht(p) =
r ≥ 1, then there exist r elements a1, . . . , ar in p such that p is minimal over the ideal〈
a1, . . . , ar

〉
.

Proof. Since ht(p) ≥ 1, p is not a minimal prime of A. Let p1, . . . , pl be the minimal
prime ideals of A. By Lemma 1.2.1, p * ∪li=1pi. We choose a1 ∈ p, a1 /∈ ∪li=1pi. Then
ht
〈
a1

〉
≥ 1.

Having chosen a1, a2, . . . , aj ∈ p, j < r, we choose aj+1 in the following manner.
Let us suppose that q′1, . . . , q

′

m ∈ Spec(A) are the minimal prime ideals of A containing〈
a1, . . . , aj

〉
. Then ht(q′k) ≤ j and hence p * q′k for k = 1, . . . ,m. We choose aj+1 ∈ p

such that aj+1 /∈ ∪mk=1q
′

k.
We prove by induction that ht

〈
a1, . . . , ai

〉
≥ i for all i, 1 ≤ i ≤ r. The case i = 1

follows as above. Assume by induction that ht
〈
a1, . . . , ai

〉
≥ i. Now, let q ∈ Spec(A)

such that q ⊃
〈
a1, . . . , ai+1

〉
. We show that ht(q) ≥ i + 1. Since q ⊃

〈
a1, . . . , ai

〉
, by

induction ht(q) ≥ i. If ht(q) > i we are done. Assume ht(q) = i. Then we claim that
q is minimal over

〈
a1, . . . , ai

〉
. For, suppose there exists prime ideal q′ of A such that

q ⊃ q′ ⊃
〈
a1, . . . , ai

〉
. Then by induction ht(q′) ≥ i. Since ht(q) = i, it follows that

q′ = q. This proves that q is minimal over
〈
a1, . . . , ai

〉
. Now, by the choice of ai+1,

ai+1 /∈ q. This contradicts the fact that q ⊃
〈
a1, . . . , ai+1

〉
. Hence ht(q) ≥ i+ 1, proving

the claim.
Therefore, ht

〈
a1, . . . , ar

〉
≥ r. Since ht(p) = r, p is minimal over

〈
a1, . . . , ar

〉
. This

completes the proof. 2

1.8 Dimension of Polynomial Algebras

In this section we prove that if A is a Noetherian ring, then dim(A[X ]) = dim(A) + 1.

Notation. 1.8.1 Let A be a ring, I ⊂ A an ideal. We denote the extension of I in the
polynomial ring A[X ] by I[X ].

Lemma 1.8.2 Let A be ring and p1 ( p2 ( p3 be a chain of prime ideals in A[X ]. Then
we cannot have p1 ∩A = p2 ∩A = p3 ∩A.

Proof. Assume to the contrary that a chain of prime ideals p1 ( p2 ( p3 exists with
the above property. By going modulo p1 ∩ A we may assume that A is a domain and
p1 ∩A = p2 ∩A = p3 ∩A = 0. Let S = A − {0}. Since there is a one-to-one correspon-
dence between prime ideals of S−1A[X ] and prime ideals of A[X ] which do not meet S,
we have S−1p1 ( S−1p2 ( S−1p3. However, since S−1A is a field, S−1A[X ] is a PID,
and hence is of dimension 1. Hence the lemma follows. 2

Lemma 1.8.3 Let A be a Noetherian ring and I be an ideal of A[X ] with ht(I) = n.
Then ht(I ∩A) ≥ n− 1.
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Proof. We split the proof in two cases.

Case 1. I is a prime ideal. Let I = p ∈ Spec(A[X ]). We claim that ht(p) = ht(p ∩ A)
if p = (p ∩A)[X ] and ht(p) = ht(p ∩A) + 1 if p ) (p ∩A)[X ]. It is clear that any chain
of prime ideals q0 ( q1 ( · · · ( qs ( (p ∩ A) in A can be extended to a chain of prime
ideals

q0[X ] ( q1[X ] ( · · · ( qs[X ] ( (p ∩A)[X ] ⊂ p (6)

in A[X ]. Let ht(p∩A) = r. By Theorem 1.7.1, (p∩A) is minimal over an ideal J which
is generated by r elements.

We claim that (p∩A)[X ] is minimal over J [X ], which is also generated by r elements.
For, if there exists a prime ideal q in A[X ] such that J [X ] ⊂ q ⊂ (p ∩ A)[X ], then
J ⊂ J [X ] ∩ A ⊂ q ∩ A ⊂ p ∩ A, and hence p ∩ A = q ∩ A. This implies that q ⊂
(p ∩ A)[X ] = (q ∩A)[X ] ⊆ q. Therefore, q = (p ∩A)A[X ], yielding the claim. Hence by
Theorem 1.6.10, ht(p ∩ A)[X ] ≤ r. Therefore, if p = (p ∩ A)[X ], then ht(p) ≤ r. But
ht(p ∩A) = r, so that ht(p) ≥ r by (6). Therefore, it follows that ht(p) = r.

On the other hand if (p∩A)[X ] ( p, then there exists f(X) ∈ p, f(X) /∈ (p ∩A)[X ].
Since J is generated by r elements, I1 =

〈
J [X ], f

〉
is generated by r + 1 elements. We

claim that p is minimal over I1. Assuming the claim it follows by Krull’s theorem that
ht(p) ≤ r + 1. Now, by (6), we have ht(p) > ht(p ∩ A)[X ] = ht(p ∩ A) = r. Thus,
ht(p) ≥ r + 1. Hence ht(p) = r + 1, proving the first assertion.

Proof of the claim: Suppose I1 ⊂ p′ ( p for some p′ ∈ Spec A[X ]. Then J ⊂
(p′∩A) ⊂ (p∩A). Since (p∩A) is minimal over J , (p′∩A) = (p∩A). Since f /∈ (p∩A)[X ],
(p∩A)[X ] ( p′ ( p. But, (p∩A) = (p∩A)[X ]∩A = p′ ∩A = p∩A, contradicting 1.8.2.
This proves the claim.

Case 2. I is any ideal of A[X ]. By the Noetherian property of A,
√
I = ∩ri=1pi, where

p1, . . . , pr are the minimal primes over I. Then
√
I ∩A =

√
I ∩ A = ∩ri=1(pi ∩ A).

Therefore, from 1.4.14 and the definition of height, ht(I ∩ A) = ht(pi ∩ A) for some
i = 1, 2, . . . , n. Using Case 1, ht(I ∩ A) = ht(pi ∩ A) ≥ ht(pi) − 1 ≥ ht(I) − 1. This
completes the proof. 2

Corollary 1.8.4 If A is a Noetherian ring then dim(A[X ]) = dim(A) + 1.

Proof. Note that for a maximal ideal m of A, A[X]
m[X] ≃ A

m
[X ] is not a field. Since every

strictly increasing chain of prime ideals of A gives a strictly increasing chain of prime
ideals in A[X ], and for a maximal ideal m of A, m[X ] is prime but not a maximal ideal
of A[X ], it follows that dim(A[X ]) ≥ dim(A) + 1.

Let dim(A) = d. We may assume that d is finite. Otherwise there is nothing to prove.
Assume that dim(A[X ]) > dim(A) + 1. Let M be a maximal ideal of A[X ] of height
> d + 1. Then by 1.8.3, ht(M ∩ A) > d. This contradicts the fact that dim(A) = d.
Hence the result follows. 2

1.9 Integral Extensions

In this section we prove some basic results on integral extensions.

Definition 1.9.1 Let A be a ring and f(X) ∈ A[X ]. Then f(X) is said to be a monic
polynomial if the coefficient of the leading term of f(X) is 1.

Definition 1.9.2 Let A →֒ B be a ring extension. An element x ∈ B is said to
be integral over A if f(x) = 0, where f(X) ∈ A[X ] is a monic polynomial i.e. if
xn + a1x

n−1 + · · · + an = 0, where ai ∈ A, and n > 0.
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Proposition 1.9.3 Let A →֒ B be a ring extension. Then the following are equivalent.
1. x ∈ B is integral over A.
2. A[x] is a finitely generated A-module.
3. A[x] is contained in a subring C such that C is a finitely generated A-module.

Proof. (1) ⇒ (2): If x is integral over A, then xn + a1x
n−1 + · · · + an = 0 for some

n > 0 and ai ∈ A (1 ≤ i ≤ n). Therefore, all powers of x lie in the A-module generated
by 1, x, . . . , xn−1. Hence A[x] is generated by 1, x, . . . , xn−1 as an A-module.

(2) ⇒ (3): Taking C = A[x], the result follows.
(3) ⇒ (1): Let c1, . . . , cr generate C as an A-module. Let xci =

∑r
j=1 λijcj , where

λij ∈ A. Let

α =




x− λ11 −λ12 · · · −λ1n

−λ21 x− λ22 · · · −λ1n

· · · · · · · · · · · ·
−λn1 −λn2 · · · x− λnn


 .

As in the proof of Nakayama Lemma we get det(α)C = 0. Since 1 ∈ C, det α = 0.
Expanding the determinant, we see that x is integral over A. 2

Example 1.9.4 Let A be a ring and I ⊂ A[X ] be an ideal containing a monic polyno-
mial and J = I ∩A. Then the extension A/J →֒ A[X ]/I is integral.

Proposition 1.9.5 Let A →֒ B be a ring extension. If x1, . . . , xn ∈ B are integral over
A, then A[x1, . . . , xn] is a finitely generated A-module.

Proof. The proof follows by induction on n. 2

Proposition 1.9.6 Let A →֒ B be a ring extension. The set of all elements of B which
are integral over A is a subring of B containing A.

Proof. Let C be the set of all elements of B which are integral overA. Let x, y ∈ C. Then
A[x, y] is a finitely generated A-module. Since A[x ± y] ⊂ A[x, y] and A[xy] ⊂ A[x, y],
it follows that A[x ± y] and A[xy] are contained in a ring A[x, y], which is a finitely
generated A-module. Therefore, by 1.9.5, x± y and xy are integral over A and hence are
in C. 2

Definition 1.9.7 The Subring C defined in 1.9.6 is called the integral closure of A
in B.

Let the notation be as in 1.9.6 and 1.9.7.
1. If B=C, then A →֒ B said to be an integral extension. The ring B is said to be

integral over A. We say that B/A is integral.
2. If A=C, then A is said to be integrally closed in B.
3. If A=C is a domain and B is the quotient field of A, then A is said to be integrally

closed.

Proposition 1.9.8 If A →֒ B and B →֒ C are integral extensions, then so is A →֒ C.

Proof. Let x ∈ C. Since C is integral over B, xn + b1x
n−1 + · · ·+ bn = 0, where bi ∈ B

(1 ≤ i ≤ n). Therefore, x is integral over A[b1, . . . , bn]. Since A →֒ B is an integral
extension, each bi is integral over A. Therefore, A[b1, . . . , bn] is a finitely generated A-
module. But as x is integral over A[b1, . . . , bn], A[b1, . . . , bn][x] is a finitely generated
A[b1, . . . , bn]-module. This implies that A[b1, . . . , bn][x] is a finitely generated A-module.
Therefore, x is contained in a ring viz. A[b1, . . . , bn][x], which is finitely generated as an
A-module. By 1.9.3, it follows that x is integral over A. 2
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Proposition 1.9.9 Let A →֒ B be an integral extension. Let I be an ideal of B and
J = I ∩A. Then A/J →֒ B/I is an integral extension.

Proof. Let x ∈ B/I, where bar denotes reduction modulo J . Since B is integral over A,
x satisfies a monic polynomial i.e., xn + a1x

n−1 + · · ·+ an = 0, where ai ∈ A, 1 ≤ i ≤ n.
It follows that x is integral over A/J . 2

Proposition 1.9.10 Let A →֒ B be an integral extension. Let S be a multiplicative
closed subset of A. Then S−1A →֒ S−1B is an integral extension.

Proof. Let x/s ∈ S−1B, where x ∈ B, s ∈ S. Since A →֒ B is integral, xn + a1x
n−1 +

· · · + an = 0, where ai ∈ A, 1 ≤ i ≤ n. Dividing both sides by sn, we get

(x
s

)n
+
a1

s

(x
s

)n−1

+ · · · + an
sn

= 0.

Thus, x/s is integral over S−1A. This proves the proposition. 2.

Proposition 1.9.11 Let A →֒ B be an integral extension of domains. Then A is a field
if and only if B is a field.

Proof. Suppose A is a field and x ∈ B be a non zero element. Let f(X) = Xn +
a1X

n−1 + · · · + an, where ai ∈ A, 1 ≤ i ≤ n, be a polynomial of least degree such that
f(x) = 0. Since B is a domain, it follows that an 6= 0. As A is a field, a−1

n ∈ A and hence
the element (−an)−1(xn−1 + a1x

n−2 + · · ·+ an−1) is inverse of x in B, proving that B is
a field.

Conversely, let B be a field and y ∈ A be a non zero element. Let x = y−1. Then
xm + a′1x

m−1 + · · · + a′n = 0, where ai
′ ∈ A, 1 ≤ i ≤ n. Multiplying by ym, we get

1 + a′1y + · · · + a′my
m = 0, i.e. y is invertible in A. Hence A is a field. 2

Corollary 1.9.12 Let A →֒ B be an integral extension. Let p be a prime ideal of A and
q be a prime ideal of B be such that q ∩ A = p. Then p is a maximal ideal of A if and
only if q is a maximal ideal of B.

Proof. The proof follows from 1.9.9 and 1.9.11. 2

Theorem 1.9.13 Let A →֒ B be integral extension of rings and p be a prime ideal of A.
Then there exists a prime ideal q of B such that q ∩A = p.

Motivation for the proof. If such a prime ideal q exists, then q ⊃ pB and q∩(A−p) =
Φ. This implies that pB ∩ (A− p) = Φ. Assuming that the extension A →֒ B is integral,
we first show that pB ∩ (A− p) = Φ and then use this to prove Theorem 1.9.13.

Lemma 1.9.14 Let A →֒ B be an integral extension, p a prime ideal of A. Then any
element x ∈ pB satisfies an equation xn+a1x

n−1 + · · ·+an = 0, where ai ∈ p, 1 ≤ i ≤ n.

Proof. Let x ∈ pB. Then x =
∑n
i=1 pibi, where pi ∈ p and bi ∈ B. Since B is integral

overA, A[b1, . . . , bn] = S (say) is a finitely generated A-module. Let S = Aw1+· · ·+Awr ,
where wj ∈ S, 1 ≤ j ≤ r.

Since bi ∈ S, biwj =
∑r

k=1 λikwk, where λik ∈ A. Since x =
∑n

i=1 pibi and pi ∈ p,
we have xwj =

∑r
k=1 gjkwk, where gjk ∈ p, 1 ≤ k ≤ r. Now the proof follows as in the

proof of (3) ⇒ (1) of 1.9.3. 2

Lemma 1.9.15 Let A →֒ B be an integral extension of rings. If p is any prime ideal of
A, then pB ∩ (A− p) = Φ.
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Proof. Suppose to the contrary let x ∈ pB ∩ (A − p). Since x ∈ pB, by Lemma 1.9.14,
it follows that xn + a1x

n−1 + · · · + an = 0, where ai ∈ p, 1 ≤ i ≤ n. This implies that
xn ∈ p and hence x ∈ p, contradicting the fact that x ∈ A− p. Hence the lemma. 2

Proof of Theorem 1.9.13. In view of Lemma 1.4.10, we can extend pB to a prime ideal
q of B such that q∩ (A− p) = Φ. This implies that q∩A ⊆ p. Also, p ⊆ pB∩A ⊆ q∩A,
showing that p = q ∩A. Hence the theorem. 2

Theorem 1.9.16 Let A →֒ B be an integral extension of rings. Let p1 ⊂ p2 be prime
ideals of A and q1 prime ideal of B such that q1 ∩ A = p1. Then there exists a prime
ideal q2 of B such that q2 ∩A = p2 and q1 ⊂ q2.

Proof. Since A →֒ B is an integral extension, by 1.9.9 it follows that A/p1 →֒ B/q1 is
an integral extension. Let us consider the following commutative diagram :

A //

φ

��

B

ψ

��

A/p1
// B/q1

Since p2 is a prime ideal of A/p1 by Theorem 1.9.13, there exists a prime ideal, say q2,
in B/q1 such that q2 ∩ (A/p1) = p2. Then ψ−1(q2) = q2 (say) is a prime ideal. Since the
above diagram is commutative, q2 ∩A = φ−1(p2) = p2. This completes the proof. 2

Theorem 1.9.17 (Going-up Theorem) Let A →֒ B be an integral extension of rings.
Let p1 ⊂ p2 ⊂ · · · ⊂ pn be a chain of prime ideals of A and q1 ⊂ q2 ⊂ · · · ⊂ qm (m ≤ n)
be a chain of prime ideals of B such that qi ∩ A = pi (1 ≤ i ≤ m). Then the chain
q1 ⊂ q2 ⊂ · · · ⊂ qm can be extended to a chain q1 ⊂ q2 ⊂ · · · ⊂ qn such that qi ∩A = pi
for 1 ≤ i ≤ n.

Corollary 1.9.18 If A →֒ B is an integral extension of rings then dim(A) = dim(B).

Theorem 1.9.19 Let A →֒ B be an integral extension of domains with A integrally
closed. Suppose p1 ( p0 are prime ideals of A such that there exists a prime ideal q0 of
B with the property that q0 ∩A = p0. Then there exists a prime ideal q1 of B such that
q1 ( q0, and q1 ∩A = p1.

Motivation for the proof of 1.9.19. Suppose we have p1 ( p0 prime ideals of A and
there exists a prime ideal q0 of B with the property that q0 ∩A = p0. We want a prime
ideal q1 of B such that q1 ∩A = p1 and q1 ⊂ q0.

If such a prime ideal exists, then q1∩(B−q0) = Φ, q1∩(A−p1) = Φ and q1 ⊃ p1B. In
that case it would follow that q1∩(B−q0)(A−p1) = Φ and hence p1B∩(B−q0)(A−p1) =
Φ. We show that if A →֒ B is an integral extension of domains and A is integrally closed,
then this is the case and then use this to prove Theorem 1.9.19.

Lemma 1.9.20 Let A →֒ B be an integral extension of domains, where A is integrally
closed with quotient field K. Then if b ∈ B, the minimal monic polynomial of b over K
belongs to A[X ].

Proof. Let f(X) = Xn + a1X
n−1 + · · · + an be the minimal monic polynomial of b

over K, where ai ∈ K, 1 ≤ i ≤ n. We show that ai ∈ A for 1 ≤ i ≤ n. Let d1, . . . , dn
be the roots of f(X) in some algebraic extension L of K, where B ⊂ K. Note that
we can choose such a field L, as the quotient field of B is algebraic over K, B being
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integral over A. Since b is integral over A, b satisfies a monic polynomial, say φ(X) over
A. Since f(X) is the minimal polynomial of b, it follows that f(X)|φ(X) in K[X ], so
that φ(di) = 0, 1 ≤ i ≤ n. Hence the di’s are integral over A for 1 ≤ i ≤ n. Since
(X − d1)(X − d2) · · · (X − dn) = Xn + a1X

n−1 + · · · + an, the ai are integral over A,
1 ≤ i ≤ n. But, since A is integrally closed, it follows that ai ∈ A, 1 ≤ i ≤ n. This
completes the proof. 2

Lemma 1.9.21 Let A →֒ B be an integral extension of domains, where A integrally
closed with quotient field K. Let p be a prime ideal of A and b ∈ pB. Let f(X) =
Xm + c1X

m−1 + · · · + cm be the minimal polynomial of b over K. Then ci ∈ p for
1 ≤ i ≤ n.

Proof. Since b ∈ pB, it follows from 1.9.14 that b satisfies a monic polynomial g(X) =
Xn + a1X

n−1 + · · ·+ an, where ai ∈ p, 1 ≤ i ≤ n. Let f(X) = Xm + c1X
m−1 + · · ·+ cm

be the minimal polynomial of b over K. By 1.9.20, ci ∈ A for 1 ≤ i ≤ m. Since f(X)
is monic, g(X) = f(X)h(X), where h(X) ∈ A[X ]. Let bar denote the reduction modulo
p. Since g(X) = Xn = f(X)h(X), f(X) = Xm, where m ≤ n. This means ci ∈ p for
1 ≤ i ≤ m. Hence the lemma follows. 2

Lemma 1.9.22 Let A →֒ B be an integral extension of domains with A integrally closed
and p1 ( p0 prime ideals of A such that there exists a prime ideal q0 of B with the
property that q0 ∩A = p0. Then p1B ∩ (B − q0)(A− p1) = Φ.

Proof. Let a ∈ (A−p1), b ∈ (B−q0) and c = ab. Suppose to the contrary that c ∈ p1B.
Let f(X) = Xn + λ1X

n−1 + · · · + λn be the minimal polynomial of c over the quotient
field of A. From 1.9.21, it follows that λi ∈ p1. Since a ∈ A, the minimal polynomial of
b over the quotient field of A is Xn + (λ1/a)X

n−1 + · · ·+ (λn/a
n). Since A is integrally

closed, by 1.9.20, λi/a
i ∈ A for 1 ≤ i ≤ n. Let µi = λi/a

i. Then as a /∈ p1, λi = aiµi
and λi ∈ p1, it follows that µi ∈ p1. Since bn + µ1b

n−1 + · · · + µn = 0, bn ∈ p1B ⊂ q0,
implying that b ∈ q0. This yields a contradiction. Hence the lemma. 2

Proof of the Theorem 1.9.19. By Lemma 1.9.22 we get p1B ∩ (B− q0)(A− p1) = Φ.
Using 1.4.10, enlarge p1B to a prime ideal q1 of B such that q1 ∩ (B − q0)(A− p1) = Φ.
Then p1B ⊂ q1 implies that p1 ⊂ q1∩A. Also q1∩(A−p1) = Φ implies that q1∩A ⊂ p1,
so that q1 ∩A = p1. Moreover, q1 ∩ (B − q0) = Φ implying that q1 ⊂ q0. 2

Theorem 1.9.23 (Going-down Theorem) Let A →֒ B be an integral extension of
domains where A is integrally closed. Let p0 ⊂ p1 ⊂ · · · ⊂ pn be a decreasing chain of
prime ideals of A and q0 ⊂ q1 ⊂ · · · ⊂ qm (m ≤ n) be a chain of prime ideals of B such
that qi ∩ A = pi for 1 ≤ i ≤ m. Then the chain q0 ⊂ q1 ⊂ · · · ⊂ qm (m ≤ n) can be
extended to a chain q0 ⊂ q1 ⊂ · · · ⊂ qn such that qi ∩A = pi for 1 ≤ i ≤ n.

Corollary 1.9.24 Let A →֒ B be an integral extension of domains with A integrally
closed. Let p be a prime ideal of B. Then ht(p) = ht(p ∩A).

Lemma 1.9.25 Let A be a ring and J be an ideal of A. If f(X) ∈ A[X ] is monic then〈
JA[X ], f(X)

〉
∩A = J .

Proof. The proof is an easy checking. 2

1.10 Dimension of Affine Algebras

Definition 1.10.1 Let k be a field, I ⊂ k[X1, . . . , Xn] an ideal and A = k[X1, . . . , Xn]/I.
Then A is said to be an affine k-algebra. If A is a domain, then we say that A is an
affine domain over k.
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In this section we prove the following theorem.

Theorem 1.10.2 Let A be an affine domain over a field k and p be a prime ideal of A.

Then ht(p) + dim
(
A
p

)
= dim(A).

Before proving the theorem we first prove some lemmas.

Lemma 1.10.3 Let k be a field, f(X1, . . . , Xn) ∈ k[X1, . . . , Xn] be a non constant poly-
nomial. Then there exist c1, . . . , cn−1 ∈ N such that if ϕ is the ring automorphism of
k[X1, . . . , Xn], given by ϕ|k = Id, ϕ(Xi) = Xi +Xci

n for 1 ≤ i ≤ n− 1 and ϕ(Xn) = Xn,
then ϕ(f(X1, . . .Xn)) is monic in Xn (after multiplying an element of k∗).

Proof. We have

ϕ(Xα1

1 · · ·Xαn
n ) = (X1 +Xc1

n )α1(X2 +Xc2
n )α2 · · · (Xn−1 +Xcn−1

n )αn−1(Xn)
αn

= Xc1α1+···+cn−1αn−1+αn

n + terms involving a lower power of Xn.

Let Xγ1
1 · · ·Xγn

n and Xβ1

1 · · ·Xβn
n be any two distinct monomials occurring in the

polynomial f(X1, . . . , Xn). We want to choose integers c1, . . . , cn−1 such that

c1β1 + · · · + cn−1βn−1 + βn 6= c1γ1 + · · · + cn−1γn−1 + γn. (7)

For, we choose t > max (γi, βj) (1 ≤ i, j ≤ n). Let c1 = tn−1, c2 = tn−2, . . . , cn−1 = t.
We claim these ci’s satisfy equation (7). This follows by considering t-adic expansions.
It is now clear that if t is suitably chosen, then ϕ(f(X1, . . . , Xn)) is monic. 2

Lemma 1.10.4 (Noether Normalization) Let k[X1, . . . , Xn] be a polynomial ring in
n variables over a field k, I ⊂ k[X1, . . . , Xn] an ideal and A = k[X1, . . . , Xn]/I be an
affine algebra over k. Then there exists a polynomial subring B = k[Z1, . . . , Zm] of A
such that B →֒ A is an integral extension.

Proof. We prove the lemma by induction on the number of variables n. If I = 0, we
choose B = k[X1, . . . , Xn]. So, we assume that I 6= 0.

Suppose n = 1. Since I contains a monic polynomial, using 1.9.4, k →֒ k[X1]/I is an
integral extension. Taking B = k, the result follows.

Assume n > 1. Let f(X1, . . . , Xn) ∈ I, f 6= 0. Applying the automorphism ϕ in
1.10.3, viz. ϕ|k = Id, ϕ(Xi) = Xi + Xci

n for 1 ≤ i ≤ n − 1 and ϕ(Xn) = Xn, we may
assume that ϕ(f) is monic in Xn. Let J = ϕ(I). Then J contains a monic polynomial
viz. ϕ(f). Hence using 1.9.4, k[X1, . . . , Xn−1]/J ∩ k[X1, . . . , Xn−1] →֒ k[X1, . . . , Xn]/J
is an integral extension. We claim that k[X1, . . . , Xn]/I is integral over the image of
k[X1 −Xc1

n , . . . , Xn−1 −X
cn−1

n ] in k[X1, . . . , Xn]/I. Let

ϕ(f) = Xr
n + gi−1(X1, . . . , Xn−1)X

r−1
n + · · · + g0(X1, . . . , Xn−1) ∈ J.

Since ϕ−1(J) = I, we have ϕ−1(f) = Xr
n + gi−1(X1 − Xc1

n , . . . , Xn−1 −X
cn−1

n )Xr−1
n +

· · · + g0(X1 −Xc1
n , . . . , Xn−1 −X

cn−1

n ) ∈ I. This proves the claim.
The image C of k[X1 − Xc1

n , . . . , Xn−1 − X
cn−1

n ] in k[X1, . . . , Xn]
/
I is an affine

k-algebra in n − 1 variables. By induction there exists a polynomial subring B =
k[Z1, . . . , Zm] of C such that B →֒ C is an integral extension. Since C →֒ A is inte-
gral, B →֒ A is integral, proving the lemma. 2

Lemma 1.10.5 A Noetherian integral domain A is a UFD if and only if every height
one prime ideal of A is principal.
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Proof. Let A be a Noetherian UFD and p ∈ Spec(A) with ht(p) = 1. Let a ∈ p, a 6= 0.
Since A is a Noetherian, a can be expressed as a = Πn

i=1di with di ∈ A, di irreducible.
Since p is prime ideal, di ∈ p for some i. Since A is a UFD,

〈
di
〉

is a (non zero) prime

ideal of A. As ht(p) = 1, p =
〈
di
〉
. Thus, p is a principal ideal.

Conversely, assume that every height one prime ideal of A is principal. Since A is
Noetherian, any non-zero, non-unit element of A can be expressed as a product of finitely
many irreducible elements. So, it is enough to show that every irreducible element of A is
prime. Let a ∈ A be irreducible and p be a minimal prime over

〈
a
〉
. Since A is a domain,

by Krull’s theorem ht(p) = 1. Therefore, by hypothesis p =
〈
b
〉

for some b ∈ A, and

hence a = bc for some c ∈ A. Then c is a unit as a is irreducible. Thus,
〈
a
〉

=
〈
b
〉

= p,
so that a is a prime element of A. 2

Lemma 1.10.6 Let A be a UFD. Then A is integrally closed.

Proof. Let K be the quotient field of A. Let c, d ∈ A and c/d ∈ K be integral over A.
We show that c/d ∈ A. We may assume without loss of generality that c and d do not
have any common prime factors. Since c/d is integral over A, we have

( c
d

)n
+ λ1

( c
d

)n−1

+ · · · + λn = 0,

where λi ∈ A, 1 ≤ i ≤ n. Multiplying this equation by dn, we see that d divides cn.
Hence d is a unit of A (otherwise d and c have a common prime factor). This is proves
the lemma. 2

Corollary 1.10.7 If k is a field and A = k[X1, . . . , Xn] then A is integrally closed.

Lemma 1.10.8 Let A = k[X1, . . . , Xn], p ∈ Spec(A). Then ht(p)+dim
(
A
p

)
= dim(A).

Proof. We prove the lemma by induction on number of variables n. It is clear that the
lemma is true for n = 1. Since the lemma is vacuously true for ht(p) = 0, we assume
ht(p) = r > 0. Let p = p0 ) · · · ) pr−1 ) pr =

〈
0
〉

be a chain of prime ideals of

length r. Then ht(pr−1) = 1. By Lemma 1.10.5, pr−1 =
〈
f
〉

for some f(X1, . . . , Xn) ∈
k[X1, . . . , Xn]. By an automorphism of k[X1, . . . , Xn] (see 1.10.3), we may assume that
f is monic in Xn. Thus,

B = k[X1, . . . , Xn−1] →֒
k[X1, . . . , Xn]〈

f
〉 = C

is an integral extension with B integrally closed. Let bar denote the reduction modulo〈
f
〉
. Then p = p0 ) · · · )

〈
f
〉

=
〈
0
〉

is a chain of prime ideals in C of length r − 1. Let
p ∩ B = q. Since ht(p) = r, ht(p) = r − 1. Now, from Corollary 1.9.24, we get ht(p) =
ht(q). Also, using 1.9.9 and 1.9.18, we see that dim(C/p) = dim(B/q). This implies that
ht(p) + dim(C/p) = ht(q) + dim(B/q). But, by induction, ht(q) + dim(B/q) = n− 1, so
that r + dim(C/p) = n. But, dim(C/p) = dim(A/p), hence the result follows. 2

Proof of Theorem 1.10.2. By Theorem 1.10.4, there exists a polynomial subalgebra
B of A such that the extension B →֒ A is integral. Let p ∩ B = q. By 1.9.9 and
1.9.18, dim(A/p) = dim(B/q) and by 1.9.24, ht(p) = ht(q). Thus, by Lemma 1.10.8,

ht(q) + dim (B/q) = dim(B). Hence it follows that ht(p) + dim
(
A
p

)
= dim(A). 2

2 Unimodular Rows

In this section we prove a few basic results on unimodular rows.
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2.1 Completability condition for a Unimodular Row over a Ring

A = commutative ring with identity element

A∗ = group of invertible elements of A

A[X1, X2, . . . , Xn] = polynomial ring in n variablesX1, X2, . . . , Xn

over the ring A
〈
a1, a2, . . . , an

〉
= ideal generated by a1, a2, . . . , an

[a1, a2, . . . , an] = row with n entries a1, a2, . . . , an

(a1, a2, . . . , an) = 1 × n matrix with n entries a1, a2, . . . , an

We recall that the set of all n × n matrices over a ring A is a ring under matrix
addition and matrix multiplication and is denoted by Mn(A).

A matrix α ∈ Mn(A) is said to be invertible if there exists β ∈ Mn(A) such that
αβ = βα = In. If α ∈ Mn(A) is invertible, then it follows that det(α) is a unit of A.
Conversely, if det(α) is a unit of A, it follows from the identity α adj(α) = adj(α)α =
det(α)In that α is invertible. The set of invertible matrices belonging to Mn(A) form a
group under matrix multiplication and this group is denoted by GLn(A). Elements of
GLn(A) give rise to automorphisms of the free module An.

The subgroup of SLn(A) of GLn(A) consists of all matrices with determinant 1.
Let Eij(λ), i 6= j, λ ∈ A, denote the matrix In + λeij , where eij is the matrix with

1 in the (i, j) th position and zeroes elsewhere. The subgroup of SLn(A) generated by
Eij(λ), λ ∈ A, is denoted by En(A).

Definition 2.1.1 Let A be a ring. A row [a1, a2, . . . , an] ∈ An is said to be unimodular
(of length n) if the ideal

〈
a1, a2, . . . , an

〉
= A. The set of unimodular rows of length n is

denoted by Umn(A).
A unimodular row [a1, a2, . . . , an] is said to be completable if there is a matrix in

GLn(A) whose first row is [a1, a2, . . . , an].

Notation. 2.1.2 Let [a1, a2, . . . , an], [b1, b2, . . . , bn] ∈ An. We write,

(a1, a2, . . . , an)
GLn(A)∼ (b1, b2, . . . , bn)

if there exists a matrix M ∈ GLn(A) such that

M




a1

a2

.

.
an




=




b1
b2
.
.
bn



.

Remark 2.1.3 Let the notation be as in 2.1.2. Assume that

M




a1

a2

.

.
an




=




b1
b2
.
.
bn



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where M ∈ GLn(A). It follows that
〈
b1, b2, . . . , bn

〉
⊂
〈
a1, a2, . . . , an

〉
. Further, since

M−1




b1
b2
.
.
bn




=




a1

a2

.

.
an




it follows then that
〈
a1, a2, . . . , an

〉
⊂
〈
b1, b2, . . . , bn

〉
. Hence if

(a1, a2, . . . , an)
GLn(A)∼ (b1, b2, . . . , bn),

then
〈
a1, a2, . . . , an

〉
=
〈
b1, b2, . . . , bn

〉
. In particular, GLn(A) acts on the set of unimod-

ular rows of length n.

Remark 2.1.4 It is easy to show that a unimodular row [a1, a2, . . . , an] ∈ An is com-

pletable if and only if (a1, a2, . . . , an)
GLn(A)∼ (1, 0, . . . , 0). Similarly, one can define

the relations
SLn(A)∼ and

En(A)∼ . The relations
GLn(A)∼ ,

SLn(A)∼ ,
En(A)∼ are equivalence

relations on Umn(A).

Example 2.1.5 If [a1, . . . , an] ∈ Umn(A), then (a1, . . . , an)
En(A)∼ (a1 +λ2a2, a2, . . . , an)

and (a1, . . . , an)
En(A)∼ (a1 + λ2a2 + · · · + λnan, a2, . . . , an).

Theorem 2.1.6 Let A be a ring and [b1, b2, . . . , bn] ∈ An be a unimodular row of length
n which contains a unimodular row of shorter length. Then the row [b1, b2, . . . , bn] is

completable. In fact; (b1, b2, . . . , bn)
En(A)∼ (1, 0, . . . , 0).

Proof. Without loss of generality we assume that the row [b1, b2, . . . , bn−1] is unimod-
ular. Hence we can find a1, a2, . . . , an−1 ∈ A such that 1 − bn = a1b1 + · · · + an−1bn−1

i.e. a1b1 + · · · + an−1bn−1 + bn = 1. Now, the result follows from the following steps:

(b1, b2, . . . , bn)
En(A)∼ (b1, b2, . . . , bn−1, 1)

En(A)∼ (0, 0, . . . , 0, 1)
En(A)∼ (1, 0, . . . , 0, 1)

En(A)∼ (1, 0, . . . , 0, 0). 2

Remark 2.1.7 It is clear that if A is a local ring, then any unimodular row is com-
pletable. For, suppose [a1, a2, . . . , an] ∈ An is a unimodular row in a local ring (A,m). If
none of the ai’s are units, then

〈
a1, a2, . . . , an

〉
⊆ m. Hence at least one of the elements ai

is a unit. Thus, [a1, a2, . . . , an] contains a unimodular row of shorter length. Therefore,

by Theorem 2.1.6, we have (a1, a2, . . . , an)
En(A)∼ (1, 0, . . . , 0, 0).

The following theorem shows that this is also true if A is a semilocal ring.

Theorem 2.1.8 In a semilocal ring A any unimodular row [a1, . . . , an] of length n ≥ 2

is completable. In fact; (a1, a2, . . . , an)
En(A)∼ (1, 0, . . . , 0, 0).

Proof. Let m1,m2, . . . ,mr be all maximal ideals ofA. Using 1.2.2, we can find b2, . . . , bn ∈
A, so that the element d = a1 + a2b2 + · · ·+ anbn /∈ ∪ri=1mi. This implies that d is a unit
in A and therefore, using 2.1.6,

(a1, a2, . . . , an)
En(A)∼ (d, a2, . . . , an)

En(A)∼ (1, 0, . . . , 0).

Hence [a1, a2, . . . , an] is completable. 2

Convention. Let A be a Noetherian ring. Then ht(A) = ∞.
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Lemma 2.1.9 Let A be a Noetherian ring and I be an ideal generated by n elements
a1, a2, . . . , an such that ht(I) ≥ n, n ≥ 1. Then there exists θ ∈ En(A) such that

(a1, a2, . . . , an) θ = (d1, d2, . . . , dn),

where d1, . . . , dn generate I and ht
〈
d1, d2, . . . , di

〉
≥ i for 1 ≤ i ≤ n.

Proof. Since A is Noetherian, there are only finitely many minimal prime ideals of
A. By hypothesis ht(I) ≥ n ≥ 1, so that I is not contained in any of the minimal
prime ideals of A. Therefore, by 1.2.2, we can find b2, . . . , bn in A such that the element
d1 = a1 + a2b2 + · · ·+ anbn does not belong to any minimal prime ideal of A. Therefore,
ht
〈
d1

〉
≥ 1. If d1 is a unit, then by the above convention the elements d1, a2, . . . , an will

serve our purpose. So we assume that d1 is not unit.
Assume, by induction we have chosen σ ∈ En(A) such that (a1, . . . , an)σ = (g1, . . . , gn),

where g1, . . . , gn generate I and ht
〈
g1
〉
≥ 1, . . . , ht

〈
g1, . . . , gi

〉
≥ i, i < n.

If
〈
g1, . . . , gi

〉
= A, then we set dj = gj for 1 ≤ j ≤ n. So, we assume that〈

g1, . . . , gi
〉
6= A. Let pi1, . . . , pir be the minimal primes over

〈
g1, . . . , gi

〉
. By Krull’s

theorem ht(pij) ≤ i for 1 ≤ j ≤ r. Since ht(I) = n > i, it follows that I * pij for all j,
1 ≤ j ≤ r. Using 1.2.2, we choose c1, . . . , ci, ci+2, . . . , cn ∈ A such that

g′i+1 = c1g1 + · · · + cigi + gi+1 + ci+2gi+2 + · · · + cngn /∈ ∪rj=1pij .

Let g′j = gj for j 6= i + 1. Then I =
〈
g′1, . . . , g

′

n

〉
and ht

〈
g′1, . . . , g

′

i+1

〉
≥ i + 1. Indeed;

recall that ht
〈
g′1, . . . , g

′

i

〉
≥ i and if p is minimal over the ideal

〈
g′1, . . . , g

′

i

〉
, then g′i+1 /∈ p.

Let qi1, . . . , qis be the minimal primes over
〈
g′1, . . . , g

′

i+1

〉
. We claim that ht(qij) ≥

i + 1 for 1 ≤ j ≤ s. Let us assume to the contrary that ht(qij) < i + 1 for some
j. Since

〈
g′1, . . . , g

′

i

〉
⊂ qij and by induction ht

〈
g′1, . . . , g

′

i

〉
≥ i, we have ht(qij) = i.

We show that qij is minimal over
〈
g′1, . . . , g

′

i

〉
. Assume to the contrary, suppose that

q ∈ Spec(A) is such that
〈
g′1, . . . , g

′

i

〉
⊂ q ( qij . Since ht

〈
g′1, . . . , g

′

i

〉
≥ i, ht(q) ≥ i, so

that ht(qij) ≥ i + 1. This contradicts our assumption. Therefore, it follows that qij is
minimal over

〈
g′1, . . . , g

′

i

〉
. By construction this implies that g′i+1 /∈ qij . This contradicts

the fact that
〈
g′1, . . . , g

′

i+1

〉
⊂ qij . Therefore, ht

〈
g′1, . . . , g

′

i+1

〉
≥ i+1. Hence by induction

the lemma follows. 2

The proof of the following theorem follows ([16], Theorem 7.3, pg. 74).

Theorem 2.1.10 Let A be a Noetherian ring with dim(A) = d. Then for n ≥ d + 2,
En(A) acts transitively on Umn(A). In other words, any unimodular row of length n
over A is completable if n ≥ d+ 2.

Proof. Suppose [a1, a2, . . . , an] ∈ An is a unimodular row of length n, where n ≥ d+ 2.

By 2.1.9, we can find b1, b2 . . . , bn in A such that (a1, a2, . . . , an)
En(A)∼ (b1, b2, . . . , bn),

where ht
〈
b1, b2, . . . , bi

〉
≥ i for 1 ≤ i ≤ n. It follows that ht

〈
b1, b2, . . . , bd+1

〉
≥ d + 1.

But dim(A) = d, hence [b1, b2, . . . , bd+1] is unimodular. Thus, [b1, b2, . . . , bn] contains a
unimodular row of shorter length, and so by Theorem 2.1.6, [b1, b2, . . . , bn] is completable.

In fact; (b1, b2, . . . , bn)
En(A)∼ (1, 0, . . . , 0). Hence (a1, a2, . . . , an)

En(A)∼ (1, 0, . . . , 0).
This proves the theorem. 2

Example 2.1.11 If [a1, a2, . . . , an] is a unimodular row with integer entries, then it
follows by using the Euclidean algorithm that there exists a matrix in σ ∈ En(Z) such
that (a1, a2, . . . , an)σ = (1, 0 . . . , 0).
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Lemma 2.1.12 For any ring A and for any ideal I of A the following diagram is com-
mutative (where the maps are the natural ones):

Mn(A) ×An //

��

Mn(A/I) × (A/I)n

��

An // (A/I)n

Lemma 2.1.13 Let A be a ring and I be an ideal of A. Then the map En(A) → En(A/I)
is surjective.

Proof. The proof follows from the fact that the generators Eij(λ) of En(A/I) can be
lifted to generators Eij(λ) of En(A). 2

Definition 2.1.14 Let A be a Noetherian ring. We define the Jacobson radical of A
(denoted by Jac(A)) to be the intersection of all maximal ideals of A.

The following theorem generalises 2.1.8 and 2.1.10.

Theorem 2.1.15 Let A be a Noetherian ring and [a1, . . . , an] ∈ Umn(A). Suppose

n ≥ dim (A/Jac(A)) + 2. Then (a1, . . . , an)
En(A)∼ (1, 0, . . . , 0).

Proof. Since [a1, . . . , an] ∈ Umn(A), the row [a1, . . . , an] is unimodular in A/Jac(A).
Since n ≥ dim (A/Jac(A)) + 2, by Theorem 2.1.10, [a1, . . . , an] is completable. In fact;

(a1, . . . , an)
En(A/Jac(A))∼ (1, 0, . . . , 0). Then (a1, . . . , an)

En(A)∼ (1 + c1, c2, . . . , cn),
by 2.1.12 and 2.1.13, where ci ∈ Jac(A). But, since c1 ∈ Jac(A), 1 + c1 is unit

of A. Therefore, by Theorem 2.1.6, (1 + c1, c2, . . . , cn)
En(A)∼ (1, 0, . . . , 0). Hence

(a1, . . . , an)
En(A)∼ (1, 0, . . . , 0). 2

2.2 Horrocks’ Theorem

The aim of this section is to prove the following theorem of Horrocks (cf. [12]). We
give two proofs due to Suslin, cf. ([16], pgs. 87 - 90).

Theorem 2.2.1 (Horrocks) Let (A,m) be a local ring and [f1(X), f2(X), . . . , fn(X)]
be a unimodular row in A[X ] with one entry monic. Then [f1(X), f2(X), . . . , fn(X)] is
completable.

We need

Lemma 2.2.2 Let k be a field and B be a ring containing k such that B is a finite
dimensional k-vector space having dimension l say. Then the number of maximal ideals
of B ≤ l.

Proof. If possible, let us assume that m1,m2, . . . ,ml+1 are l+ 1 distinct maximal ideals
of B. Then we have

mi + m1m2 . . .mi−1mi+1 . . .ml+1 = B

Therefore, we can choose ci ∈ m1m2 . . .mi−1mi+1 . . .ml+1 such that ci − 1 ∈ mi. We
claim that c1, . . . , cl+1 ∈ B are linearly independent over k. Suppose to the contrary

that
∑l+1

i=1 aici = 0 in B, where ai ∈ k and not all ai are zero. Without loss of generality

27



we may assume that a1 6= 0, so that c1 = −∑l+1
i=2 a

−1
1 aici, showing that c1 ∈ m1. Since

c1 − 1 ∈ m1, it follows that 1 ∈ m1, a contradiction. Therefore, the elements c1, . . . , cl+1

in B are linearly independent, yielding a contradiction. Hence the lemma follows. 2

Now, we give the proof of the Theorem 2.2.1.

Proof 1. Clearly, any unimodular row of length 2 is completable. Let us consider the
case where n ≥ 3. Without loss of generality we may assume that f1(X) is monic.
Let deg(f1(X)) = n and B = A[X ]/

〈
f1(X)

〉
. Then B is finitely generated A-module,

generated by the images of 1, X, . . . , Xn−1. Hence A →֒ B is an integral extension. We
now split the proof of the theorem into two parts.

Step 1. In this step we show that B is semilocal. First of all mB 6= B. This follows
from Nakayama lemma, since B is finitely generated A-module. Hence B/mB is a finite
dimensional A/m-vector space. Since A →֒ B is an integral extension, maximal ideals
of B contract to the unique maximal ideal m of A. Therefore, maximal ideals of B are
in one-to-one correspondence with maximal ideals of B/mB. So, it suffices to show that
the number of maximal ideals of B/mB is finite. This follows from Lemma 2.2.2 as the
number of maximal ideals of B/mB ≤ l, where l = dimA/mB/mB. This proves that B
is semilocal.

Step 2. By Step 1, B = A[X ]/
〈
f1(X)

〉
is semilocal. Since n ≥ 3, n − 1 ≥ 2. Let bar

denote the reduction modulo
〈
f1(X)

〉
. Using Theorem 2.1.8, we have

(f2(X), . . . , fn(X))
En−1(B)∼ (1, 0, . . . , 0).

So, there exists α ∈ En−1(B) such that

α




f2(X)

f3(X)
.
.

fn(X)




=




1
0
.
.
0




where bar denotes the reduction modulo f1(X). Applying Lemma 2.1.13, to the surjective
map A[X ] → A[X ]/

〈
f1(X)

〉
, we can lift α to σ ∈ En−1(A[X ]) and by 2.1.12 we get

σ




f2(X)
f3(X)
.
.

fn(X)




=




1 + f1(X)h1(X)
f1(X)h2(X)

.

.
f1(X)hn−1(X)




where hi(X) ∈ A[X ], 1 ≤ i ≤ n− 1. Therefore,

(
1 0
0 σ

)




f1(X)
f2(X)
.
.

fn(X)




=




f1(X)
1 + f1(X)h1(X)

.

.
f1(X)hn−1(X)




En(A[X])∼




1
0
.
.
0



.

This completes the proof. 2

Proof 2. Let [f1(X), . . . , fn(X)] ∈ Umn(A[X ]) with f1(X) monic and r2(X), . . . , rn(X)
be the remainders obtained after dividing f2(X), . . . , fn(X) by f1(X). Then

(f1(X), f2(X), . . . , fn(X))
En(A[X])∼ (f1(X), r2(X), . . . , rn(X))
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and deg(ri) < deg(f1) for 2 ≤ i ≤ n. Therefore, we may assume that deg(fi) < deg(f1)
if i > 1. We split the proof into two parts.

Case 1. deg(f1) = 1. Then f1(X) = X − a1 for some a1 ∈ A and the unimodular
row [f1(X), f2(X), . . . , fn(X)] is of the form [X − a1, a2, . . . , an], where a2, . . . , an ∈ A.
If ai ∈ m for all i = 2, . . . , n, then by going modulo m, the row [X − a1, 0, . . . , 0] is
unimodular in k[X ], where k = A/m. But this is a contradiction, as X − a1 is not unit
of k[X ]. Hence ai /∈ m for some i, 2 ≤ i ≤ n and for that i, ai is a unit. Therefore,
the row [X − a1, a2, . . . , an] contains a unimodular row of shorter length and hence is
completable by Theorem 2.1.6, showing that [f1(X), f2(X), . . . , fn(X)] is completable.
Therefore, the theorem is proved in this special case.

Case 2. deg(f1) = l > 1. As before we may assume deg(fi) < deg(f1) for 2 ≤ i ≤ n.
Our aim is to transform the unimodular row to another row with one of the entries
monic with degree less than deg(f1) and appeal to induction. Since [f1(X), . . . , fn(X)]
is a unimodular row, we have

∑n
i=1 fi(X)gi(X) = 1, where gi(X) ∈ A[X ]. If all the

coefficients of each fi for 2 ≤ i ≤ n, belong to m, we get f1(X) g1(X) = 1 in (A/m)[X ].
This implies that f1(X) is unit in k[X ], where k = A/m. But this is impossible as f1(X)
is monic. Hence, without loss of generality, we may assume that not all coefficients of
f2(X) are in m. We show that the ideal

〈
f1(X), f2(X)

〉
contains a monic polynomial

of degree ≤ deg(f1) − 1. Suppose f1(X) = X l + al−1X
l−1 + · · · + a0 and f2(X) =

bkX
k + bk−1X

k−1 + · · ·+ b0. Note that by assumption deg(f2) < deg(f1) i.e. k < l. We
define h1(X) = X l−kf2(X) − bkf1(X). Then deg(h1) < deg(f1) and

h1(X) = (bk−1 − al−1bk)X
l−1 + lower degree terms .

If bk /∈ m, then bk is a unit and multiplying f2 by b−1
k we obtain the required polynomial.

We assume therefore that bk ∈ m and hence on going modulo m, we get h1(X) =

bk−1X l−1 + bk−2X l−2 + · · · in (A/m)[X ]. If bk−1 /∈ m, bk−1 − al−1bk /∈ m, as bk ∈ m.
Thus, in this case we have produced a polynomial h1(X) in

〈
f1(X), f2(X)

〉
such that

deg(h1) = deg(f1) − 1 and the leading coefficient of h1(X) is a unit of A.
Otherwise, since by assumption not all coefficients of f2(X) are in m, let t be the small-

est natural number such that bk−t /∈ m. Assume by induction that we have constructed
for i < t a polynomial hi(X) = cl−1X

l−1 + · · ·+ c0 ∈
〈
f1(X), f2(X)

〉
such that hi(X) =

bk−iX l−1+bk−i−1X l−2+ · · · in (A/m)[X ]. Note that we can start the induction for i = 1
as above. Having constructed hi(X) we define, hi+1(X) = Xhi(X) − cl−1f1(X). Thus,

if ht−1(X) = dl−1X
l−1 + · · ·+ d0 is such that ht−1(X) = bk−(t−1)X l−1 + bk−tX l−2 + · · ·

in (A/m)[X ]. Then ht(X) = Xht−1(X) − dl−1f1(X). The coefficient c (say) of X l−1 in
ht(X) is congruent to bk−t modulo m. But, by assumption bk−t /∈ m, and hence c−1ht(X)
is monic of degree l − 1. Thus we have constructed a polynomial h(X) = c−1ht(X) in〈
f1(X), f2(X)

〉
such that h(X) is monic and deg(h) = deg(f1) − 1.

The assumption deg(fi) < deg(f1) for i > 1 implies that deg(h) ≥ deg(f3). If
deg(h) > deg(f3), then h+f3 is monic. Suppose deg(h) = deg(f3). Since f3 is not monic
(otherwise we are through), the leading coefficient of f3 = a (say), is in m. Hence 1 + a
is a unit of A and h+ f3 = (1 + a)X l−1 + lower degree terms .

Let h(X) = g1(X)f1(X)+g2(X)f2(X) for some g1(X), g2(X) ∈ A[X ]. By considering

σ =




1 0 . . . .
0 1 0 . . . .
g1 g2 1 0 . . .
0 0 0 1 0 . .
. . . . . . 1



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we get

σ




f1
f2
f3
.
.
fn




=




f1
f2

h+ f3
.
.
fn



.

Therefore, multiplying h+ f3 by (1 + a)−1, we have produced an equivalent unimodular
row to the given unimodular row with a monic entry of degree l − 1. Proceeding induc-
tively we can produce an equivalent unimodular row to the given one with a monic entry
of degree 1. In that case the proof follows from Case 1. Hence the theorem. 2

2.3 Local-Global Principle

The aim of this section is to prove following Local-Global Principle due to D. Quillen,
cf. [29]. The proof we give is due to Vaserstein. We follow ([17], pg. 848).

Theorem 2.3.1 (Local-Global Principle for GLn(A[X ])) Suppose A is a ring and
[f1(X), . . . , fn(X)] is a unimodular row. If

(f1(X), . . . , fn(X))
GLn(Am[X])∼ (f1(0), . . . , fn(0))

for all maximal ideals m of A, then

(f1(X), . . . , fn(X))
GLn(A[X])∼ (f1(0), . . . , fn(0)).

We will prove the theorem when A is a domain.

Remark 2.3.2 In order to check that (f1(X), . . . , fn(X))
GLn(Am[X])∼ (f1(0), . . . , fn(0)),

it is enough to check that (f1(X), . . . , fn(X))
GLn(Am[X])∼ (1, 0, . . . , 0). For, we have

[f1(0), . . . , fn(0)] is a unimodular row in a local ring Am and hence is elementary equiv-
alent to [1, 0, . . . , 0] by 2.1.7.

To prove the theorem we first prove the following lemma.

Lemma 2.3.3 Let A be an integral domain, S a multiplicative closed subset of A. If

(f1(X), . . . , fn(X))
GLn(S−1A[X])∼ (f1(0), . . . , fn(0))

then there exists c ∈ S such that

(f1(X + cY ), . . . , fn(X + cY ))
GLn(A[X,Y ])∼ (f1(X), . . . , fn(X)).

Proof. Let f(X) = [f1(X), . . . , fn(X)] and f(0) = [f1(0), . . . , fn(0)]. By hypothesis
it follows that there exists a matrix, say σ(X), in GLn(S

−1A[X ]) such that f(X) =
σ(X)f(0). Therefore, f(0) = σ(X)−1f(X) is constant and hence invariant under the
translationX 7→ X+Y , i.e. σ(X)−1f(X) = σ(X+Y )−1f(X+Y ) = f(0). Let τ(X,Y ) =
σ(X)σ(X + Y )−1. Then

τ(X,Y )f(X + Y ) = σ(X)σ(X + Y )−1f(X + Y ) = σ(X)f(0) = f(X).
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Since τ(X, 0) = In, we can find c ∈ S such that τ(X, cY ) ∈ Mn(A[X,Y ]). Further,
as det(σ(X)) is a unit of S−1A (since σ(X) ∈ GLn(S

−1A[X ])), we get det(σ(X)) =
det(σ(X + cY )). Therefore, det(τ(X, cY )) = det(σ(X)) det(σ(X + cY )−1) = 1. This
implies that τ(X, cY ) ∈ SLn(A[X,Y ]) and

τ(X, cY )f(X + cY ) = σ(X)σ(X + cY )−1f(X + cY ) = σ(X)f(0) = f(X).

This completes the proof. 2

Proof of Theorem 2.3.1. Let f(X) be as above and

J = {c ∈ A | (f1(X + cY ), . . . , fn(X + cY ))
GLn(A[X,Y ])∼ (f1(X), . . . , fn(X))}.

We first show that J is an ideal.
Let c1, c2 ∈ J . Then there exist matrices σ1(X,Y ) and σ2(X,Y ) in GLn(A[X,Y ])

such that σ1(X,Y )f(X + c1Y ) = f(X) and σ2(X,Y )f(X + c2Y ) = f(X). Hence we get
σ2(X + c1Y, Y )f(X + (c1 + c2)Y ) = f(X + c1Y ). This gives

(f1(X + (c1 + c2)Y ), . . . , fn(X + (c1 + c2)Y )
GLn(A[X,Y ])∼ (f1(X), . . . , fn(X)).

Therefore, c1 + c2 ∈ J . Similarly, if c ∈ J and λ ∈ A by considering the substitutions
X 7→ X and Y 7→ λY it follows that cλ ∈ J and hence J is an ideal.

We claim that J = A. Suppose not, then J ⊆ m for some maximal ideal m of A. By

hypothesis, (f1(X), . . . , fn(X))
GLn(Am[X])∼ (f1(0), . . . , fn(0)), so by Lemma 2.3.3, there

exists c ∈ S = A− m such that

(f1(X + cY ), . . . , fn(X + cY ))
GLn(A[X,Y ])∼ (f1(X), . . . , fn(X)).

This implies that c ∈ J , but c /∈ m. This is a contradiction and hence the claim. Now,

since 1 ∈ J , we have (f1(X + Y ), . . . , fn(X + Y ))
GLn(A[X,Y ])∼ (f1(X), . . . , fn(X)). So

there exists σ(X,Y ) ∈ GLn(A[X,Y ]) such that

σ(X,Y )




f1(X + Y )
f2(X + Y )

.

.
fn(X + Y )




=




f1(X)
f2(X)
.
.

fn(X)



.

Let us consider the homomorphism ψ : A[X,Y ] → A[Y ], sending X → 0 and Y → Y .
Then we obtain a matrix σ(0, Y ) ∈ GLn(A[Y ]) ⊂ GLn(A[X,Y ]) such that

σ(0, Y )




f1(Y )
f2(Y )
.
.

fn(Y )




=




f1(0)
f2(0)
.
.

fn(0)



.

Replacing Y by X it follows that (f1(X), . . . , fn(X))
GLn(A[X])∼ (f1(0), . . . , fn(0)). 2
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2.4 Generalisation of Horrocks’ Theorem

The aim of this section is to prove the following generalisation due to Quillen (cf.[29])
and Suslin (cf.[39]) of Horrocks theorem. We give two proofs one following Ravi Rao
(cf.[31]) and another proof using a trick of Mandal.

Theorem 2.4.1 (Quillen-Suslin) Let A be a domain and [f1(X), . . . , fn(X)] be a uni-
modular row in A[X ] with one entry, say f1(X), monic. Then the row [f1(X), . . . , fn(X)]
is completable.

Proof. We write

f1(X) = Xr1 + a1r1−1X
r1−1 + · · · + a10

f2(X) = a2r2X
r2 + a2(r2−1)X

r2−1 + · · · + a20

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
fn(X) = anrn

Xrn + an(rn−1)X
rn−1 + · · · + an0.

Now, consider polynomials g1, . . . , gn defined as follows:

g1(X) = a10X
r1 + a11X

r1−1 + · · · + 1
g2(X) = a20X

r2 + a21X
r2−1 + · · · + a2r2

· · · · · · · · ·
· · · · · · · · ·
gn(X) = an0X

rn + an1X
rn−1 + · · · + anrn

.

We claim that the new row [g1(X), . . . , gn(X)] is unimodular in A[X ]. To prove the
claim let us first show that, [g1(X), . . . , gn(X)] ∈ Umn(A[X,X−1]). By hypothesis,
[f1(X), . . . , fn(X)] ∈ Umn(A[X ]). Hence [f1(X

−1), . . . , fn(X
−1)] ∈ Umn(A[X−1]). Fur-

ther, fi(X
−1) = X−deg(fi)gi(X) for all i, 1 ≤ i ≤ n. So

[X−deg(f1)g1(X), . . . , X−deg(fn)gn(X)] ∈ Umn(A[X−1]).

Thus, there exist h1(X), . . . , hn(X) ∈ A[X ] such that
∑n

i=1X
−deg(fi)gi(X)hi(X

−1) = 1.
Multiplying both sides by Xd, for sufficiently large d, we get Xd ∈

〈
g1(X), . . . , gn(X)

〉
.

Now, if
〈
g1(X), . . . , gn(X)

〉
6= A[X ] then there exists some maximal ideal M of A[X ]

such that,
〈
g1(X), . . . , gn(X)

〉
⊆ M. Since Xd ∈ M, X ∈ M and since g1(0) = 1,

1 ∈ M. This is a contradiction. Hence [g1(X), . . . , gn(X)] ∈ Umn(A[X ]). Since the row
[f1(X), . . . , fn(X)] is unimodular, setting X = 0, it follows that

〈
a10, . . . , an0

〉
= A.

Let m be a maximal ideal of A. Then at least one of the ai0 (1 ≤ i ≤ n) is not
in m and for that i, gi(X) has leading coefficient a unit of Am. So localising at m

and applying Horrocks’ theorem we have (g1(X), . . . , gn(X))
GLn(Am[X])∼ (1, 0, . . . , 0)

for all maximal ideals m of A. Hence by Quillen’s Local-Global Principle we have

(g1(X), . . . , gn(X))
GLn(A[X])∼ (g1(0), . . . , gn(0)). But, g1(0) = 1, so by Theorem 2.1.6,

(g1(0), . . . , gn(0))
GLn(A)∼ (1, 0, . . . , 0), hence (g1(X), . . . , gn(X))

GLn(A[X])∼ (1, 0, . . . , 0).

Setting X = 1, we get (g1(1), . . . , gn(1))
GLn(A)∼ (1, 0, . . . , 0). Again by applying Hor-

rocks’ theorem we have (f1(X), . . . , fn(X))
GLn(Am[X])∼ (1, 0, . . . , 0) for all maximal ideals

m of A and hence by Quillen’s Local-Global Principle

(f1(X), . . . , fn(X))
GLn(A[X])∼ (f1(0), . . . , fn(0)).
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In particular, setting X = 1, (f1(1), . . . , fn(1))
GLn(A)∼ (f1(0), . . . , fn(0)). Combining

these it follows that,

(f1(X), . . . , fn(X))
GLn(A[X])∼ (f1(0), . . . , fn(0))

GLn(A[X])∼ (f1(1), . . . , fn(1)) = (g1(1), . . . , gn(1))

GLn(A[X])∼ (1, 0, .... . . . ...., 0).

Hence [f1(X), . . . , fn(X)] is completable. This completes the proof. 2

The following proof is based on a trick of Mandal, cf. ([18], Remark 1.3).

Proof 2. Let [f1(X), . . . , fn(X)] ∈ Umn(A[X ]) with f1(X) monic. We define polyno-
mials hi(X,T ) as follows: hi(X,T ) = T deg(fi)fi(X − T + T−1). It then follows that for
f1(X) = Xr + a1X

r−1 + · · · + ar,

T rf1(X − T + T−1) = (TX − T 2 + 1)r + a1T (TX − T 2 + 1)r−1 + · · · + arT
r.

i.e., hi(X,T ) is monic in T and h1(X, 0) = 1. We claim that [h1(X,T ), . . . , hn(X,T )] ∈
Umn(A[X,T, T−1]).

By hypothesis, there exist g1(X), . . . , gn(X) ∈ A[X ] such that
∑n

i=1 fi(X)gi(X) = 1.
Hence we have

∑n
i=1 fi(X − T + T−1)gi(X − T + T−1) = 1. This implies that

n∑

i=1

T−deg(fi)hi(X,T )gi(X − T + T−1) = 1. (8)

This proves the claim. Now, we show that I =
〈
h1(X,T ), . . . , hn(X,T )

〉
= A[X,T ].

For, if I 6= A[X,T ], then I ⊂ M for some maximal ideal M of A[X,T ]. Multiplying
equation (8) by large power of T we get, T s ∈ M for some natural number s > 0, hence
T ∈ M. But h1(X, 0) = 1, so that 1 ∈ M, a contradiction.

Now take B = A[X ]. Since h1(X,T ) is monic in T , by Horrocks’ theorem

(h1(X,T ), . . . , hn(X,T ))
GLn(Bm[T ])∼ (1, 0, . . . , 0)

for every maximal ideals m of B. Therefore, by Quillen’s Local-Global Principle

(h1(X,T ), . . . , hn(X,T ))
GLn(B[T ])∼ (h1(X, 0), . . . , hn(X, 0)).

In particular, (h1(X, 1), . . . , hn(X, 1))
GLn(B)∼ (h1(X, 0), . . . , hn(X, 0)). As h1(X, 0) = 1,

it follows that [h1(X, 0), . . . , hn(X, 0)] contains a unimodular row of shorter length and

hence by Theorem 2.1.6, (h1(X, 0), . . . , hn(X, 0))
En(B)∼ (1, 0, . . . , 0). Therefore, we have

(f1(X), . . . , fn(X)) = (h1(X, 1), . . . , hn(X, 1))

GLn(B)∼ (h1(X, 0), . . . , hn(X, 0))

En(B)∼ (1, 0, . . . , 0).

This completes the proof. 2

Corollary 2.4.2 (Quillen-Suslin). Let k be a field and A = k[X1, . . . , Xd]. Then any
unimodular row of length n over A is completable.
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Proof. The proof follows from 1.10.3 and 2.4.1.

Remark 2.4.3 The following principle is implicitly used in the proof of 2.4.1. Let A

be ring. If [f1(X), . . . , fn(X)] ∈ Umn(A[X ]) and suppose (f1(X), . . . , fn(X))
GLn(A[X])∼

(f1(0), . . . , fn(0)). Then for any specialisation X 7→ a ∈ A (f1(a), . . . , fn(a))
GLn(A)∼

(f1(0), . . . , fn(0)). Hence (f1(X), . . . , fn(X))
GLn(A[X])∼ (f1(a), . . . , fn(a)) for every a ∈ A.

2.5 A Theorem of Suslin

The aim of this section is to apply Quillen’s local-global principle to give a partial
proof (assuming 2.5.4) of the following theorem of Suslin, cf. [39].

Theorem 2.5.1 Let A be a ring, [a0, . . . , an] ∈ Umn+1(A). Then the row [ar00 , . . . , a
rn
n ]

is completable if n ! | r0 · · · rn, where r0, . . . , rn are natural numbers.

The following lemma is based on an unpublished remark of Mohan Kumar.

Lemma 2.5.2 Let A be a local domain, [a0, . . . , an] ∈ Umn+1(A) and r > 0 an integer.

Then [ar0, a1 + a0X, a2, . . . , an] ∈ Umn(A[X ]) and (ar0, a1 + a0X, a2, . . . , an)
GLn+1(A[X])∼

(1, 0, . . . , 0).

Proof. It is easy to check that [ar0, a1 + a0X, a2, . . . , an] ∈ Umn+1(A[X ]). If ai /∈ m

for some i ∈ {0, 2, 3, . . . , n}, then by Theorem 2.1.6, the row [ar0, a1 + a0X, a2, . . . , an]
is completable and the lemma is true in this case. So we assume that ai ∈ m for all
i ∈ {0, 2, 3, . . . , n}. Since [ar0, a1, a2, . . . , an] is a unimodular row, it follows that a1 is
a unit of A. Hence [ar0, a1 + a0X ] ∈ Um2(A[X ]) (since any maximal ideal of A[X ]
containing

〈
ar0, a1 + a0X

〉
has to contain a1, which is a unit). Therefore, the unimodular

row [ar0, a1 + a0X, a2, . . . , an] contains a unimodular row of shorter length and hence

(ar0, a1 + a0X, a2, . . . , an)
GLn+1(A[X])∼ (1, 0, . . . , 0). 2

Lemma 2.5.3 Let A be a domain, r > 0 a natural number and [a0, a1, . . . , an] a uni-
modular row of length n+ 1. Then, there exists α ∈ GLn+1(A) such that

(ar0, a1, . . . , an)α = (a0, a
r
1, . . . , an).

Proof. By 2.5.2, we can apply Quillen’s localization theorem to the unimodular row
[ar0, a1 + a0X, a2, . . . , an]. Setting X = 0 and X = −1, we obtain

(ar0, a1, a2, . . . , an)
GLn+1(A)∼ (ar0, a1 − a0, a2, . . . , an).

Moreover, ar1 − ar0 = λ(a1 − a0) for some λ ∈ A, i.e ar1 = ar0 + λ(a1 − a0), so that

(ar0, a1 − a0, a2, . . . , an)
En+1(A)∼ (ar1, a1 − a0, a2, . . . , an).

Hence (ar0, a1, a2, . . . , an)
GLn+1(A)∼ (ar1, a1−a0, a2, . . . , an). Now, repeating the above pro-

cess with unimodular row [ar1, a1−a0, a2, . . . , an], we get (ar1, a1−a0, a2, . . . , an)
GLn+1(A)∼

(ar1, a1 − a0 − a1, a2, . . . , an) = (ar1,−a0, a2, . . . , an). Hence (ar0, a1, a2, . . . , an)
GLn+1(A)∼

(ar1,−a0, a2, . . . , an). i.e. (ar0, a1, a2, . . . , an)
GLn+1(A)∼ (a0, a

r
1, a2, . . . , an). 2

Theorem 2.5.4 (Suslin). (cf. [39]) Let A be a domain and [a0, . . . , an] ∈ Umn+1(A).
Then the row [a0, a1, a

2
2 . . . , a

n
n] is completable.
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Corollary 2.5.5 Let A be a domain and [a0, a1, a2, . . . , an] ∈ Umn+1(A). Then the row
[a0, a1, a2, . . . , an−1, a

n!
n ] is completable.

Proof. The proof follows from 2.5.4 and 2.5.3. 2

Proof of Theorem 2.5.1. The proof follows from 2.5.3 and 2.5.5. 2

2.6 Quillen’s Decomposition

The aim of this section is to prove a splitting lemma of Quillen (cf. [29]) and deduce
some consequences which will be used later. We follow the proof given in [11].

Let A be a domain and s be a non zero element of A. Suppose σ(X) ∈ GLn(As[X ])
is such that σ(0) = In. Then there exists a positive integer N such that for all n1 ≥ N
and for all λ ∈ A, σ(λsn1X) ∈ Mn(A[X ]). Further, det(σ(X)) is a unit of A[X ] and
hence unit of A. Therefore, det(σ(X)) = det (σ(0)) = 1. Hence det(σ(λsn1X)) = 1 and
therefore, σ(λsn1X) ∈ GLn(A[X ]).

Lemma 2.6.1 (Quillen) Let A be a domain and s, t ∈ A be such that sA + tA = A.
Suppose there exists σ(X) ∈ GLn(Ast[X ]) with the property that σ(0) = In. Then there
exists ψ1(X) ∈ GLn(As[X ]) with ψ1(0) = In and ψ2(X) ∈ GLn(At[X ]) with ψ2(0) = In
such that σ(X) = (ψ1(X))t(ψ2(X))s.

(Here (ψ1(X))t is the image of ψ1(X) in GLn(Ast[X ]) and (ψ2(X))s is the image of
ψ2(X) in GLn(Ast[X ]).)

Proof. Since σ(0) = In, σ(X) = In +Xτ(X), where τ(X) ∈ Mn(Ast[X ]). So, we can
choose a large integer N1 such that σ(λskX) ∈ GLn(At[X ]) for all λ ∈ A and for all
k ≥ N1. We define a matrix β(X,Y, Z) ∈ GLn(Ast[X,Y, Z]) as follows:

β(X,Y, Z) = σ((Y + Z)X)σ(Y X)−1. (9)

Then β(X,Y, 0) = In, and hence there exists large integer N2 such that for all k ≥ N2

and for all µ ∈ A we have β(X,Y, µtkZ) ∈ GLn(As[X,Y, Z]). That means,

β(X,Y, µtkZ) = (σ1(X,Y, Z))t, (10)

where σ1(X,Y, Z) ∈ GLn(As[X,Y, Z]) with σ1(X,Y, 0) = In.
Let N = max(N1, N2). By hypothesis, it follows that

〈
sN
〉

+
〈
tN
〉

= 1. Thus,
there exist λ, µ ∈ A such that λsN + µtN = 1. Setting Y = λsN , Z = µtN , we get
from (9), β(X,λsN , µtN ) = σ(X)σ(λsNX)−1. Setting Z = 1, Y = λsN in (10), we
get β(X,λsN , µtN) = (σ1(X,λs

N , µtN ))t = (ψ1(X))t, where ψ1(X) ∈ GLn(As[X ]).
Therefore, σ(X)σ(λsNX)−1 = (ψ1(X))t. Let σ(λsNX) = (ψ2(X))s, where ψ2(X) ∈
GLn(At[X ]). Since σ(0) = In, ψ1(0) = ψ2(0) = In. Now, the result follows by using the
identity, σ(X) = σ(X)σ(λsNX)−1σ(λsNX). 2

Remark 2.6.2 Let the notation be as in 2.6.1 By interchanging the roles of s and t
we can write σ(X) = (τ1(X))s(τ2(X))t, where τ1(X) ∈ GLn(At[X ]) with τ1(0) = Id and
τ2(X) ∈ GLn(As[X ]) with τ2(0) = Id.

Definition 2.6.3 Any two matrices α and β in GLn(A) are said to be connected if
there exists σ(X) ∈ GLn(A[X ]) such that σ(0) = α and σ(1) = β. By considering the
matrix σ(1 −X), it follows that if α is connected to β, then β is connected to α.

Lemma 2.6.4 Let A be a ring. Then any matrix in En(A) can be connected to the
identity matrix.
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Proof. Let α ∈ En(A) be any matrix. Then, α = Πr
i=1Eij(λ). We define σ(X) =

Πr
i=1Eij(λX). Then σ(X) ∈ GLn(A[X ]), σ(0) = In and σ(1) = α. This proves the

lemma. 2

Corollary 2.6.5 Let A be a domain, s, t ∈ A be such that sA + tA = A and τ ∈
GLn(Ast) be such that τ can be connected to the identity matrix. Then τ = τ1τ2 for
some τ1 ∈ GLn(As) and τ2 ∈ GLn(At).

Proof. The proof follows by applying 2.6.1, and setting X = 1.

Lemma 2.6.6 Let A be a domain. If σ1 ∈ En(As) , σ2 ∈ En(At), then σ1σ2 = β1β2,
where β1 ∈ GLn(At) and β2 ∈ GLn(As).

Proof. Since σ1σ2 ∈ En(Ast), there exists α(X) ∈ GLn(Ast[X ]) such that α(0) = In
and α(1) = σ1σ2. By remark 2.6.2, α(X) = δ1(X)δ2(X), where δ1(X) ∈ GLn(At[X ])
and δ2(X) ∈ GLn(As[X ]). Setting X = 1, we get σ1σ2 = β1β2, where β1 = δ1(1) and
β2 = δ2(1). This proves the lemma. 2

Lemma 2.6.7 Let A be a domain. If σ1 ∈ GLn(As), σ2 ∈ En(At), then σ1σ2 = β1β2,
where β1 ∈ GLn(At) and β2 ∈ GLn(As).

Proof. We can write σ1σ2 = σ1σ2σ
−1
1 σ1. Therefore, it suffices to show that σ1σ2σ

−1
1 =

γ1γ2, where γ1 ∈ GLn(At) and γ2 ∈ Gln(As). Then the result follows by setting β1 =
γ1, β2 = γ2σ1. Since any elementary matrix can be connected to the identity matrix,
we can find α(X) ∈ GLn(At[X ]) such that α(0) = In and α(1) = σ2. Let δ(X) =
σ1α(X)σ−1

1 . Then δ(1) = σ1σ2σ
−1
1 . Since δ(X) ∈ GLn(Ast[X ]) and δ(0) = In, by

2.6.2, δ(X) = δ1(X)δ2(X), where δ1(X) ∈ GLn(At[X ]) and δ2(X) ∈ GLn(As[X ]). Let
γ1 = δ1(1) and γ2 = δ2(1). Now, the lemma follows. 2

Remark 2.6.8 Proceeding similarly one can prove that if σ1 ∈ En(As) and σ2 ∈
GLn(At), then σ1σ2 = β1β2, where β1 ∈ GLn(At) and β2 ∈ GLn(As).

2.7 On a Theorem of Ravi.A.Rao

In this section we prove a weaker version of the following theorem of Ravi.A.Rao. For
details see [31].

Theorem 2.7.1 Let A be a ring and [f1(X), . . . , fn(X)] be a unimodular row in A[X ]
with f1(X) monic. Then if n ≥ 3, there exists an elementary matrix which transforms
(f1(X), . . . , fn(X))t to (1, 0, . . . , 0)t.

Proof. cf. [31].
In view of Lemma 2.6.4, the following theorem is a special case of Ravi’s Theorem.

Theorem 2.7.2 Let A be a domain and [f1(X), . . . , fn(X)] ∈ Umn(A[X ]) with f1(X)
monic. Then there exists a matrix α(X,W ) ∈ GLn(A[X,W ]) such that α(X, 0) = In
and

α(X, 1)




f1(X)
f2(X)
.
.

fn(X)




=




1
0
.
.
0



.

i.e. we can find a matrix which can be connected to the identity matrix taking the column
(f1, f2, . . . , fn)

t to (1, 0, . . . , 0)t.
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Proof. Case 1. Suppose

(f1(0), . . . , fn(0)) = (1, 0, . . . , 0). (11)

By 2.4.1 there exists β(X) ∈ GLn(A[X ]) such that

β(X)




f1(X)
f2(X)
.
.

fn(X)




=




1
0
.
.
0



.

So, we have following:

β(0)




f1(0)
f2(0)
.
.

fn(0)




=




1
0
.
.
0




⇒ β(0)




1
0
.
.
0




=




1
0
.
.
0




(using (11))

⇒ β(0)−1β(X)




f1(X)
f2(X)
.
.

fn(X)




=




1
0
.
.
0



.

Let σ(X) = β(0)−1β(X). Then σ(0) = In and

σ(X)




f1(X)
f2(X)
.
.

fn(X)




=




1
0
.
.
0




We set α(X,W ) = σ(XW ), proving the result in this case.

Case 2. To establish the result in general we apply the trick of Mandal used earlier. We
introduce a new variable T and consider the ring A[X,T, T−1]. Let

h1(X,T ) = T deg(f1)f1(X − T + T−1)

hi(X,T ) = T deg(fi)+1fi(X − T + T−1)

for i = 2, . . . , n. Then as in 2.4.1, we get (1) h1(X,T ) is monic in T and h1(X, 0) = 1, (2)
[h1(X,T ), . . . , hn(X,T )] ∈ Umn(R[X,T ]), (3) hi(X, 0) = 0 for i > 1 and (4) hi(X, 1) =
fi(X).
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Therefore, [h1(X, 0), . . . , hn(X, 0)] = [1, 0, . . . , 0] and hence by Case 1, there exists
β(X,T,W ) ∈ GLn(A[X,T,W ]) such that β(X,T, 0) = In and

β(X,T, 1)




h1(X,T )
h2(X,T )

.

.
hn(X,T )




=




1
0
.
.
0



.

Let α(X,W ) = β(X, 1,W ). Then α(X, 0) = β(X, 1, 0) = In. Since α(X, 1) = β(X, 1, 1)
and hi(X, 1) = fi(X) for 1 ≤ i ≤ n, we have

α(X, 1)




f1(X)
f2(X)
.
.

fn(X)




=




1
0
.
.
0



.

This completes the proof of the theorem. 2

Lemma 2.7.3 Let [f1(X), f2(X)] ∈ Um2(A[X ]). Then there exists a matrix τ(X) ∈
GL2(A[X ]) such that τ(0) = I2 and

τ(X)

(
f1(X)
f2(X)

)
=

(
f1(0)
f2(0)

)
.

Proof. Since any row of length 2 is completable, there exists a matrix σ(X) ∈ GL2(A[X ])
such that

σ(X)

(
f1(X)
f2(X)

)
=

(
1
0

)
.

Hence

σ(0)

(
f1(0)
f2(0)

)
=

(
1
0

)
.

Therefore,

σ(0)−1σ(X)

(
f1(X)
f2(X)

)
=

(
f1(0)
f2(0)

)
.

Setting τ(X) = σ(0)−1σ(X), the lemma follows. 2

Lemma 2.7.4 Let A be a ring and [f1(X), . . . , fn(X)] ∈ Umn(A[X ]) with f1(X) monic.
Then there exists a matrix τ(X) ∈ GLn(A[X ]) such that τ(0) = In and

τ(X)




f1(X)
f2(X)
.
.

fn(X)




=




f1(0)
f2(0)
.
.

fn(0)



.

Proof. Since f1(X) is monic, by Horrocks’ theorem and Quillen’s localisation theorem
there exists σ(X) ∈ GLn(A[X ]) such that

σ(X)




f1(X)
f2(X)
.
.

fn(X)




=




f1(0)
f2(0)
.
.

fn(0)



.
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Hence

σ(0)−1σ(X)




f1(X)
f2(X)
.
.

fn(X)




= σ(0)−1




f1(0)
f2(0)
.
.

fn(0)




=




f1(0)
f2(0)
.
.

fn(0)



.

Setting τ(X) = σ(0)−1σ(X), the lemma follows. 2

2.8 Suslin’s Monic Polynomial Theorem

The aim of this section is to prove a simpler version 2.8.4 of Suslin’s monic polynomial
theorem, cf. ([16], pg. 93).

Lemma 2.8.1 Let A be a Noetherian ring with dim(A) = d. Suppose M is a maximal
ideal of A[X ] such that ht(M) = d+ 1. Then M ∩A is also a maximal ideal of A.

Proof. From Lemma 1.8.3, it follows that ht(M ∩ A) ≥ d. But, as dim(A) = d,
ht(M ∩A) = d and hence M ∩A is a maximal ideal of A. 2

Lemma 2.8.2 Let A be a Noetherian ring, M ⊂ A[X ] a maximal ideal of height d+ 1.
Then M contains a monic polynomial.

Proof. Suppose M∩A = m. It follows from Lemma 2.8.1 that m is maximal ideal in A.
The isomorphism

A[X ]

mA[X ]
∼= A

m
[X ]

implies that the ideal mA[X ] of A[X ] is not maximal. Note that M contains mA[X ]. Let
f(X) = a0 + a1X + · · · + anX

n be a polynomial of smallest degree in M − mA[X ]. If
an ∈ m, then a0 +a1X+ · · ·+an−1X

n−1 ∈ M−mA[X ]. This is impossible by the choice
of f(X). Hence an /∈ m, so that there exists bn ∈ A such that anbn − 1 ∈ m. Therefore,
bnf(X) − (anbn − 1)Xn ∈ M is the required monic polynomial. 2

Lemma 2.8.3 Let A be a Noetherian ring with dim(A) = d and I be an ideal of A[X ]
such that ht(I) = d+ 1. Then I contains a monic polynomial.

Proof. By 1.4.13, it follows that
√
I = ∩ni=1pi where, the prime ideals pi are minimal over

I. But, ht(I) = d+1 implies that ht(pi) ≥ d+1. Since dim(A[X ]) = d+1, ht(pi) = d+1,
and the prime ideals pi are maximal. Hence by Lemma 2.8.2, each pi contains a monic
polynomial. So, by taking the product of the monic polynomials belonging to pi for each
i, we get a monic polynomial in

√
I. By taking some large power of that polynomial we

get a monic polynomial belonging to I. 2

Theorem 2.8.4 Let A be a Noetherian domain of dimension d and
[f1(X), f2(X), . . . , fn(X)] ∈ Umn(A[X ]), where n ≥ d + 2. Then we can find a ma-
trix β(X) ∈ GLn(A[X ]) such that β(X) can be connected to the identity matrix and

β(X)




f1(X)
f2(X)
.
.

fn(X)




=




1
0
.
.
0



.
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Proof. Since any elementary matrix can be connected to the identity matrix [cf. 2.6.4],
the result follows from 2.1.10, if n ≥ d + 3. So we assume that n = d + 2. By Lemma
2.1.9, we can find σ(X) ∈ En(A[X ]) such that

σ(X)




f1(X)
f2(X)
.
.

fn(X)




=




g1(X)
g2(X)
.
.

gn(X)




and ht(g1(X), . . . , gi(X)) ≥ i for 1 ≤ i ≤ n. Since ht
〈
g1(X), . . . , gn−1(X)

〉
≥ n − 1 =

d+1, it follows from Lemma 2.8.3 that the ideal
〈
g1(X), . . . , gn−1(X)

〉
contains a monic

polynomial, say h(X). By adding a large power of h(X) to gn(X), we may assume that
gn is monic. Now, by adding a large power of gn(X) to g1(X), we may assume that
g1(X) is monic. Hence by Theorem 2.7.2, there exists a matrix δ(X,T ) ∈ GLn(A(X,T )
such that δ(X, 0) = In and

δ(X, 1)




g1(X)
g2(X)
.
.

gn(X)




=




1
0
.
.
0



.

Now, σ(X) is elementary and hence can be connected to the identity matrix. Hence
there exists δ′(X,T ) ∈ GLn(A[X,T ]) such that δ′(X, 0) = In and δ′(X, 1) = σ(X). Let
α(X,T ) = δ(X,T )δ′(X,T ). Then α(X, 0) = In and

α(X, 1)




f1(X)
f2(X)
.
.

fn(X)




=




1
0
.
.
0



.

Setting β(X) = α(X, 1), the result follows. 2

3 On Forster’s Conjecture

The aim of this section is to give a proof of Forster’s conjecture 3.3.3, viz.
Theorem. Let k be a field and p ⊂ k[X1, . . . , Xn] be a prime ideal such that

k[X1, . . . , Xn]/p is regular. Then p is generated by n elements.
The proof we give is based on a theorem of Satya Mandal 3.3.2. We also use the

theorem of Mandal to prove some addition principles (see 3.4).

3.1 Conditions for Efficient Generation of Ideals

Let A be a ring and M an A-module. Then we define µ(M) to be the minimum number
of elements of M needed to generate M .

Definition 3.1.1 An ideal I of a ring A is said to be efficiently generated if µ(I) =
µ(I/I2).
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In this section we give necessary conditions for an ideal I to be efficiently generated.
The results proved in this section are in a certain sense the analogues of the results proved
in Sections 2.1 and 2.2.

Theorem 3.1.2 Let (A,m) be a Noetherian local ring and I ⊂ A be an ideal. Suppose
there exist f1, f2, . . . , fn in I such that their images generate I/I2, then I is generated
by f1, f2, . . . , fn.

Proof. Since m is the unique maximal ideal of A, I ⊆ m. Since A is Noetherian, I is
finitely generated. Let J be the ideal of A generated by f1, . . . , fn. Then I = J + I2.
Using Corollary 1.3.5, I = J . This proves the lemma. 2

The following lemma is based on a result of Kronecker (cf.[14]).

Lemma 3.1.3 Let A be a Noetherian ring with dim(A) = d and I ⊂ A be an ideal.
Then there exist f1, f2, . . . , fd+1 ∈ I such that V (I) = V (f1, f2, . . . , fd+1).

Proof. We split the proof into six steps.

Step 1. If I is contained in every minimal prime ideal of A, then V (I) = Spec(A), and
we may choose f1 = f2 = · · · = fd+1 = 0.
Step 2. We may therefore assume that I is not contained in every minimal prime ideal
of A. Let p1, p2, . . . , pr be the minimal prime ideals of A which do not contain I. Since
I * pi for 1 ≤ i ≤ r, by 1.2.1, it follows that I * ∪ri=1pi. Hence we can choose f1 ∈ I
such that f1 /∈ ∪ri=1pi.
Step 3. Let q1, q2, . . . , qs ∈ Spec(A) be the minimal prime ideals containing

〈
f1
〉

but
not containing I. If no such prime ideals exist we choose f2 = 0. Otherwise, as in Step
2, we choose f2 ∈ I such that f2 /∈ ∪si=1qi.
Step 4. Having chosen f1, f2, . . . , fj ∈ I for 1 ≤ j ≤ d, in the above way, let
p′1, p

′

2, . . . , p
′

l ∈ Spec(A) be the minimal prime ideals of A containing
〈
f1, f2, . . . , fj

〉

but not containing I. If no such prime ideals exist, we choose fj+1 = 0 and fi = 0 for

j + 1 ≤ i ≤ d+ 1. Otherwise, we choose fj+1 ∈ I such that fj+1 /∈ ∪li=1p
′

i.
Step 5. We claim that if p ∈ Spec(A), p ⊃

〈
f1, f2, . . . , fi

〉
and p + I, then ht(p) ≥ i for

1 ≤ i ≤ d+1. We prove the claim by induction on i. The case i = 1, follows from Step 2.
Assume, by induction, the assertion of the claim holds for i = j. Suppose p ∈ Spec(A),
p ⊃

〈
f1, f2, . . . , fj+1

〉
, p + I. We will prove that ht(p) ≥ j + 1. Assume that ht(p) ≤ j.

We will derive a contradiction.
Since p ⊃

〈
f1, f2, . . . , fj

〉
and p + I, it follows from the induction hypothesis that

ht(p) ≥ j. By assumption, we have ht(p) ≤ j. It therefore follows that ht(p) = j.
We next prove that p is minimal over

〈
f1, f2, . . . , fj

〉
. Let p′ ∈ Spec(A) be such that

p ) p′ ⊃
〈
f1, f2, . . . , fj

〉
. Since p + I, p′ + I. This implies that ht(p′) ≥ j by the

induction hypothesis. Hence ht(p) ≥ j + 1, which is a contradiction. Therefore, p is
minimal over

〈
f1, f2, . . . , fj

〉
. Since p + I, it follows from Step 4, that fj+1 /∈ p. This

contradicts the assumption that p ⊃
〈
f1, f2, . . . , fj+1

〉
. Hence the claim.

Step 6. By Step 5, if p ∈ Spec(A) is such that p ⊃
〈
f1, f2, . . . , fd+1

〉
and p + I,

then ht(p) ≥ d + 1. Since dim(A) = d, it follows that any prime ideal containing〈
f1, f2, . . . , fd+1

〉
has to contain I. Therefore, V (f1, f2, . . . , fd+1) ⊂ V (I). On the

other hand
〈
f1, f2, . . . , fd+1

〉
⊂ I, so that V (I) ⊂ V (f1, f2, . . . , fd+1). Therefore, V (I) =

V (f1, f2, . . . , fd+1). 2

We can ask, what additional hypothesis are necessary to conclude that I is generated
by d+ 1 elements. If I is generated by d+ 1 elements, then so is I/I2. It turns out that
this additional condition is sufficient to ensure that I is generated by d+ 1 elements.

We prove the following theorem due to N. Mohan Kumar, cf. [23], Lemma 4.
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Theorem 3.1.4 Let A be Noetherian ring with dim(A) = d, and I ⊂ A be an ideal such
that I/I2 is generated by d+ 1 elements. Then I is generated by d+ 1 elements.

Before proving Theorem 3.1.4, we prove the following theorem.

Theorem 3.1.5 Let A be a Noetherian ring and I be an ideal of A. Then I will be
generated by n elements f1, f2, . . . , fn provided f1, f2, . . . , fn generate I modulo I2 and
V (f1, f2, . . . , fn) = V (I).

To prove this Theorem we need the following lemmas.

Lemma 3.1.6 Let A be a Noetherian ring and I ⊂ A be an ideal such that I = I2. Then
I is generated by an idempotent element.

Proof. Since A is Noetherian, I is finitely generated. By 1.3.3, there exists a ∈ I such
that (1−a)I = 0. We claim that I =

〈
a
〉
. Clearly,

〈
a
〉
⊂ I. Let b ∈ I. Then (1−a)b = 0.

Since ab ∈
〈
a
〉
, b ∈

〈
a
〉
. Hence the claim. Now, since (1 − a)a = 0, a = a2. Hence a is

an idempotent element. 2

Corollary 3.1.7 Let A be a Noetherian ring and I ⊂ A be an ideal. Suppose I =〈
a1, a2, . . . , an

〉
+ I2. Then I =

〈
a1, a2, . . . , an, e

〉
, where e(1 − e) ∈

〈
a1, a2, . . . , an

〉
.

Proof. Let a1, a2, . . . , an ∈ I be such that their images generate I/I2. Then I =〈
a1, a2, . . . , an

〉
+ I2. Suppose Ī = I/

〈
a1, a2, . . . , an

〉
, where bar denotes reduction mod-

ulo
〈
a1, a2, . . . , an

〉
. Then Ī = Ī2. By Lemma 3.1.6, Ī =

〈
ē
〉

for some idempotent

element ē ∈ Ī . Let e ∈ I be any preimage of ē. Then I =
〈
a1, a2, . . . , an, e

〉
and

e(1 − e) ∈
〈
a1, a2, . . . , an

〉
. 2

Lemma 3.1.8 Let A be a ring and e ∈ A be an idempotent element. Then

〈
e
〉
∩
〈
1 − e

〉
= {0}.

Proof. Let x ∈
〈
e
〉
∩
〈
1 − e

〉
. Then x = λe = µ(1 − e) for some λ, µ ∈ A. This implies

that λe2 = µe(1 − e). Since e = e2, it follows that x = λe = λe2 = µe(1 − e) = 0. 2

Lemma 3.1.9 (cf. [5], Lemma 2.11) Let A be a Noetherian ring and J ⊂ A be an ideal.
Let J1 ⊂ J and J2 ⊂ J2 be two ideals of A such that J1 + J2 = J . Then J = J1 +

〈
e
〉

for some e ∈ J2 and J1 = J ∩ J ′, where J2 + J ′ = A.

Proof. We claim that (J/J1)
2 = J/J1. Clearly, (J/J1)

2 ⊂ J/J1. Conversely, we know
that (J/J1)

2 = (J2 +J1)/J1. But, J2 +J1 ⊃ J2 +J1 ⊃ J implying that (J/J1)
2 ⊃ J/J1.

Hence the claim.
Let bar denote reduction modulo J1. By Lemma 3.1.6, it follows that J/J1 =

〈
e
〉

for some idempotent element e ∈ J/J1. Since the map J2 → J/J1 is surjective, we may
assume that e ∈ J2. Let J ′ = J1 +

〈
1− e

〉
. Then e ∈ J2 implies 1 = e+(1− e) ∈ J2 +J ′,

showing that J2 + J ′ = A.

Lastly to show that J ∩ J ′ = J1. It suffices to show that J ∩ J ′

=
〈
0
〉
. But, this is

clear by 3.1.8, since J =
〈
e
〉

and J ′ =
〈
1 − e

〉
. Hence the lemma follows. 2

Lemma 3.1.10 Let A be a ring, M an A-module and N be an A-submodule of M .
Then following three statements are equivalent. (i)M = N . (ii)Mp = Np for every
p ∈ Spec(A). (iii)Mm = Nm for every m ∈ Max(A).
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Proof. Let us consider the A-module L = M/N . Then L = 0 ⇔ M = N and Lp =
0 ⇔Mp = Np (see 1.1.16). Therefore, it suffices to show the equivalence of the following
three statements. (i) M = 0. (ii) Mp = 0 for every p ∈ Spec(A). (iii) Mm = 0 for
every m ∈ Max(A).

Clearly, (i) ⇒ (ii) ⇒ (iii). Now, we show that (iii) ⇒ (i). Let (iii) be true and
suppose M 6= 0. Then there exists x ∈ M such that x 6= 0. If I = ann(x) = {λ ∈
A |λx = 0}, then I 6= A, as x 6= 0. Thus, I is contained in some maximal ideal m of
A. Now, x

1 ∈ Mm = 0 implying that there exists s ∈ A − m such that sx = 0. But
s ∈ ann(x) = I ⊂ m. This is a contradiction, hence (iii) ⇒ (i). 2

Proof of Theorem 3.1.5.

Proof 1. Let J =
〈
f1, f2, . . . , fn

〉
. In order to check that J = I, by Lemma 3.1.10, it

is enough to check that Ip = Jp for all p ∈ Spec(A). If p + J , then p + I and hence
Ip = Jp = Ap. If p ⊃ J , then by hypothesis p ⊃ I. Since f1, f2, . . . , fn generate I modulo
I2, and Ap is local, by Lemma 3.1.2, Ip = Jp. This proves the lemma. 2

Proof 2. Since
〈
f1, f2, . . . , fn

〉
+ I2 = I, by Lemma 3.1.9,

〈
f1, f2, . . . , fn

〉
= I ∩ I ′ for

some ideal I ′ of A such that I + I ′ = A. It follows that no prime ideal of A can contain
both I and I ′. We claim that I ′ = A. Take p ∈ Spec(A) such that p ⊃ I ′. Then
p ⊃

〈
f1, f2, . . . , fn

〉
and hence by hypothesis p ⊃ I. This is a contradiction. Hence the

claim. Therefore,
〈
f1, f2, . . . , fn

〉
= I. 2

We now proceed to the proof of Theorem 3.1.4. Its proof is similar to that of
Lemma 3.1.3. The idea of the proof is to start with a set of generators g1, g2, . . . , gd+1

of I modulo I2 and modify them by elements of I2 to obtain f1, f2, . . . , fd+1, so that
V (f1, f2, . . . , fd+1) = V (I) and appeal to 3.1.5.

Proof of Theorem 3.1.4. We split the proof into five steps.
Step 1. If I is contained in every minimal prime ideal of A, then V (I) = Spec(A).
Therefore, V (g1, g2, . . . , gd+1) = Spec(A) = V (I) and by 3.1.5, I =

〈
g1, g2, . . . , gd+1

〉
.

Step 2. We may therefore assume that I is not contained in every minimal prime ideal
of A. Let p1, . . . , pr be the minimal prime ideals of A which do not contain I. Since
I * pi, I

2 * pi (1 ≤ i ≤ r). We choose y1 ∈ I2 such that y1 /∈ ∪ri=1pi. Suppose that
g1 ∈ pi for 1 ≤ i ≤ l and g1 /∈ pi for l + 1 ≤ i ≤ r. We choose a1 ∈ ∩ri=l+1pi − ∪li=1pi.
The element f1 = g1 + a1y1 /∈ ∪ri=1pi and f1 = g1 modulo I2.
Step 3. Having chosen f1, f2, . . . , fj we choose fj+1 in the following manner. Let
p′1, p

′

2 . . . , p
′

m be the minimal prime ideals containing
〈
f1, f2, . . . , fj

〉
and not containing

I. If no such prime ideals exist, we choose fi = gi for all i ≥ j+1. Otherwise, as in Step 2,
we choose yj+1 ∈ I2, yj+1 /∈ ∪mi=1p

′

i. Suppose gj+1 ∈ pi
′ for 1 ≤ i ≤ s and gj+1 /∈ pi

′ for
s+1 ≤ i ≤ m. We choose aj+1 ∈ ∩mi=s+1p

′

i−∪si=1p
′

i. The element fj+1 = gj+1+aj+1yj+1

satisfies the property that fj+1 /∈ ∪mi=1p
′

i and fj+1 = gj+1 modulo I2.
Step 4. As in 3.1.3, it follows that if p ∈ Spec(A), p ⊃

〈
f1, f2, . . . , fi

〉
and p + I, then

ht(p) ≥ i, 1 ≤ i ≤ d+ 1.
Step 5. By Step 4, if p ∈ Spec(A), p ⊃

〈
f1, f2, . . . , fd+1

〉
and p + I, then ht(p) ≥ d+ 1.

Since dim(A) = d, it follows that any prime ideal containing
〈
f1, f2, . . . , fd+1

〉
contains I.

Therefore, V (f1, f2, . . . , fd+1) = V (I). Further, since fi = gi mod I2 and g1, g2, . . . , gd+1

generate I modulo I2, it follows from 3.1.5 that f1, f2, . . . , fd+1 generate I. This com-
pletes the proof of the theorem. 2.

Theorem 3.1.11 Let A be a Noetherian ring with dim(A) = d, I ⊂ A an ideal of A
such that I/I2 is generated by n elements, where n ≥ d + 1. Then I is generated by n
elements.
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Proof. We choose g1, g2, . . . , gn ∈ I which generate I modulo I2. As in the proof
of Theorem 3.1.4, we choose f1, f2, . . . , fd+1 ∈ I such that fi = gi modulo I2 for i =
1, 2, . . . , d+ 1 and V (I) = V (f1, f2, . . . , fd+1). Since gi = fi modulo I2 and g1, g2, . . . , gn
generate I modulo I2, it follows that f1, . . . , fd+1, gd+2, . . . , gn generate I modulo I2.
Since V (I) = V (f1, . . . , fd+1), we have V (I) = V (f1, . . . , fd+1, gd+2, . . . , gn). Thus, by
Lemma 3.1.5, f1, . . . , fd+1, gd+2, . . . , gn generate I. This proves the theorem. 2

The following lemma is special case of a result of Eisenbud-Evans. For details see
([8], Theorem A).

Lemma 3.1.12 Let A be a Noetherian ring and [a1, . . . , an, a] ∈ An+1. Then there
exists [b1, . . . , bn] ∈ An such that if I =

〈
a1 + ab1, . . . , an + abn

〉
, then ht(Ia) ≥ n, i.e. if

p ∈ Spec(A), I ⊂ p and a /∈ p, then ht(p) ≥ n.

Proof. If a belongs to every minimal prime ideal of A, then a belongs to every prime
ideal of A and there is nothing to prove.

Let p1, p2, . . . , pr be the minimal prime ideals of A which do not contain a. Since
a /∈ pi,

〈
a1, a

〉
* pi. Hence by Lemma 1.2.1,

〈
a1, a

〉
* ∪ri=1pi. Using 1.2.2, we choose

b1 ∈ A such that a1+b1a /∈ ∪ri=1pi. Having chosen b1, b2, . . . , bk for k < n, we choose bk+1

as follows. Suppose that q1, q2, . . . , qs ∈ Spec(A) are the minimal prime ideals containing
the ideal

〈
a1 + b1a, . . . , ak + bka

〉
but a /∈ qi, 1 ≤ i ≤ s. If no such prime ideal with the

above property exists, we choose bk+1 = 0 and bi = 0 for i ≥ k + 1. Otherwise, since
a /∈ qi,

〈
ak+1, a

〉
* ∪si=1qi. We choose bk+1 ∈ A such that ak+1 + bk+1a /∈ ∪si=1qi. It is

easy to check that the elements b1, . . . , bn satisfy the required property. 2

Lemma 3.1.13 Let A be a Noetherian ring and I ⊂ A be an ideal of A. If f1, f2, . . . , fn ∈
I generate I modulo I2 and every maximal ideal containing

〈
f1, f2, . . . , fn

〉
contains I

then f1, f2, . . . , fn generate I.

Proof. The proof is along the lines of 3.1.5. 2

The next two results are in [26].

Theorem 3.1.14 Let A be a Noetherian semilocal ring, I ⊂ A an ideal. If I/I2 gener-
ated by n elements, then I generated by n elements.

Proof. Let a1, . . . , an ∈ I generate I/I2. Then
〈
a1, . . . , an

〉
+ I2 = I. Suppose every

maximal ideal containing
〈
a1, . . . , an

〉
contains I. Then by Lemma 3.1.13, I is generated

by the n elements a1, . . . , an. Assume otherwise. Since A is semilocal, it has only finitely
many maximal ideals. Let m1, . . . ,ml be the maximal ideals of A such that mi + I,
mi ⊃

〈
a1, . . . , an

〉
. We are going to change a1 so that l = 0. Enumerating all the

maximal ideals of A and classifying them, it follows that A has the following three types
of maximal ideals. (i) a1 ∈ m′

1, . . . ,m
′

s, where m′

i ⊃ I. (ii) a1 ∈ m1, . . . ,ml, where
mi + I. (iii) a1 /∈ m′′

1 , . . . ,m
′′

q . It is clear that I2 ∩m′

1 ∩ · · · ∩m′

s ∩m′′

1 ∩ · · · ∩m′′

q * mi for
all i = 1, 2, . . . , l.

We choose, b ∈ I2 ∩ m′

1 ∩ · · · ∩ m′

s ∩ m′′

1 ∩ · · · ∩ m′′

q such that b /∈ ∪li=1mi. Let

a′1 = a1 + b. Since b ∈ I2,
〈
a′1, a2, . . . , an

〉
+ I2 = I. We shall show that any maximal

ideal of A containing the ideal
〈
a′1, a2, . . . , an

〉
contains I. Let m be a maximal ideal of

A such that m ⊃
〈
a′1, a2, . . . , an

〉
. Then a′1 = a1 + b ∈ m, where b /∈ ∪li=1mi.

If m = mi for some i = 1, 2, . . . , l, then a′1 ∈ mi. But, since a1 ∈ mi, b ∈ mi, which
is not true. Further, if m = m′′

j , then m contains a′1 as well as b, so that it contains a1.
But m′′

j does not contain a1. This implies, m 6= m′′

j for j = 1, 2, . . . , q.
Therefore, m = m′

r for some r ∈ {1, 2, . . . , s}. This implies that m contains I. Hence
the assertion. Using Lemma 3.1.13, it follows that I =

〈
a′1, a2, . . . , an

〉
.

2
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As a direct consequence of Theorem 3.1.14, we have the following theorem.

Theorem 3.1.15 Let A be a Noetherian local ring. Let I ⊂ A[X ] be an ideal containing
a monic polynomial. Suppose I/I2 is generated by n elements. Then I is generated by n
elements.

Proof. Let f(X) ∈ I be a monic polynomial and suppose
〈
f1(X), . . . , fn(X)

〉
+ I2 = I.

Replacing f1 by f1 + fp for sufficiently large p > 0 we may assume that f1 is monic.
Now, the theorem follows by applying 3.1.14 to the ring A[X ]/

〈
f1(X)

〉
. 2

The next theorem 3.1.18 generalises 3.1.11 and 3.1.14. Before proving the theorem
we prove the following lemma.

Lemma 3.1.16 Let A be a Noetherian ring, J ⊂ A an ideal. Suppose J =
〈
b1, . . . , bn, s

〉
,

where s ∈ J2. Then there exists c1, . . . , cn in A such that if di = bi+sci then
〈
d1, . . . , dn

〉
=

J ∩ J ′, where J ′ +
〈
s
〉

= A and ht(J ′) ≥ n. In particular, if n ≥ dim(A) + 1 then

J =
〈
d1, . . . , dn

〉
.

Proof. Using Lemma 3.1.12, we choose ci ∈ A, 1 ≤ i ≤ n, such that if di = bi+sci, then
the ideal

〈
d1, . . . , dn

〉
satisfies the property: If p ∈ Spec(A) is such that p ⊃

〈
d1, . . . , dn

〉
,

s /∈ p then ht(p) ≥ n. Now, since
〈
d1, . . . , dn, s

〉
= J and s ∈ J2, by 3.1.9,

〈
d1, . . . , dn

〉
=

J ∩ J ′, where J ′ +
〈
s
〉

= A. We show that ht(J ′) ≥ n. Suppose p ∈ Spec(A), p ⊃ J ′.

Then p ⊃
〈
d1, . . . , dn

〉
. Since J + J ′ = A, p + J and hence s /∈ p. It follows that

ht(p) ≥ n. This implies that ht(J ′) ≥ n. Hence the lemma follows. 2

Remark 3.1.17 Using 3.1.16 and 3.1.9, we can get another proof of 3.1.11.

Theorem 3.1.18 Let A be a Noetherian ring, I ⊂ A an ideal. Suppose I/I2 is generated
by n elements, where n ≥ dim (A/Jac(A)) + 1. Then I is generated by n elements.

Proof. Let a1, . . . , an generate I modulo I2. Then
〈
a1, . . . , an

〉
+I2 = I. Using 3.1.9, we

choose c ∈ I2 such that
〈
a1, . . . , an, c

〉
= I. Let B = A/Jac(A) and bar denote reduction

modulo Jac(A). Then
〈
a1, . . . , an, c

〉
= I =

I + Jac(A)

Jac(A)
.

Using Lemma 3.1.16 we choose µ1, . . . , µn ∈ B such that
〈
a1+µ1c, . . . , an+µnc

〉
= I∩I ′,

where ht(I
′

) ≥ n and I + I ′ = B. But, as n > dim (A/Jac(A)), I
′

= B. This implies,〈
a1 +µ1c, . . . , an +µnc

〉
= I. Hence

〈
a1 +µ1c, . . . , an+µnc

〉
+Jac(A) = I +Jac(A). Let

J =
〈
a1 +µ1c, . . . , an+µnc

〉
. Since c ∈ I2, the ideal J satisfies the property, J + I2 = I.

We claim that every maximal ideal of A containing J has to contain I. Let m be a
maximal ideal of A such that m ⊃ J . Since m ⊃ Jac(A), m ⊃ J + Jac(A) and hence
m ⊃ I. Therefore, by Lemma 3.1.13, J = I. Hence I is generated by n elements. This
proves the theorem. 2

3.2 Some Patching Lemmas

Lemma 3.2.1 Let A be a domain, I an ideal of A. Let a, c ∈ A be such that
〈
a, c
〉

= A.
Then

I //

��

Ia

��

Ic // Iac
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is a pullback diagram. This means that if two elements x ∈ Ia, y ∈ Ic are equal in Iac,
then there exists a unique z ∈ I such that z

1 = x in Ia and z
1 = y in Ic.

Proof. Let x = b
ar ∈ Ia and y = d

cs ∈ Ic be such that b
ar = d

cs in Iac, (where b, d ∈ I).
Hence bcs = dar in A. Since

〈
a, c
〉

= A,
〈
ar, cs

〉
= A. We choose λ, µ ∈ A such that

λar+µcs = 1. Let z = λb+µd. Then arz = arλb+arµd = arλb+csµb = b(arλ+csµ) = b
and csz = csλb + csµd = arλd + csµd = d(arλ + csµ) = d. Hence we have z

1 = b
ar in Ia

and z
1 = d

cs in Ic. The uniqueness of z can be proved easily. 2

Remark 3.2.2 The element z ∈ I defined in 3.2.1 is called the pullback of (x, y).

Lemma 3.2.3 Let A be a domain, I an ideal of A. Let a, c ∈ A be elements such that〈
a, c
〉

= A. Suppose Ia =
〈
x1, . . . , xn

〉
, Ic =

〈
y1, . . . , yn

〉
and xi = yi in Iac. Suppose

zi ∈ I is the pullback of (xi, yi). Then I =
〈
z1, . . . , zn

〉
.

Proof. Let Ia =
〈
b1
ar1

, · · · , bn

arn

〉
and Ic =

〈
d1
cs1
, · · · , dn

csn

〉
, where bi, di ∈ I, 1 ≤ i ≤ n.

Suppose bi

ari
= di

csi
in Iac for all i. By 3.2.1, there exists unique zi ∈ I such that

zi = bi

ari
in Ia and zi = di

csi
in Ic. We claim I =

〈
z1, . . . , zn

〉
. Let x ∈ I. Then

x =
∑n
i=1

λi

ar′
i

bi

ari
=
∑n

i=1
λi

ar′
i
zi and x =

∑n
i=1

µi

cs′
i

di

csi
=
∑n

i=1
µi

cs′
i
zi. Let r′′ = max{r′i}ni=1

and s′′ = max{s′i}ni=1. Let r = max(r′′, s′′). Then we have arx =
∑n

i=1 λ
′

izi and
crx =

∑n
i=1 µ

′

izi, where λ′i, µ
′

i ∈ A. Since
〈
ar, cr

〉
= A, there exists t1, t2 ∈ A such that

t1a
r + t2c

r = 1. Therefore, x = x(t1a
r + t2c

r) = t1a
rx + t2c

rx =
∑n

i=1(t1λ
′

i + t2µ
′

i)zi.
This proves the claim. 2

Lemma 3.2.4 Let A be domain, I an ideal of A. Let a, c ∈ A be such that
〈
a, c
〉

= A.
Suppose there exist two surjections f : Ana ։ Ia viz. ei 7→ xi and g : Anc ։ Ic viz. ei 7→ yi
where xi ∈ Ia, yi ∈ Ic, 1 ≤ i ≤ n. If there exists σ ∈ GLn(Aac) such that f̂σ = ĝ (where

f̂ : Anac → Iac and ĝ : Anac → Iac are induced by f and g respectively) and further that
σ = τ1τ2, where τ1 ∈ GLn(Aa) and τ2 ∈ GLn(Ac), then I is generated by n elements.

Proof. Case 1. Suppose σ = In i.e. f̂ = ĝ. Then in Iac, xi = f̂(ei) = ĝ(ei) = yi.
Therefore, by Lemma 3.2.3, I is generated by n elements.

Case 2. (The general case) We are given that σ = τ1τ2, where τ1 ∈ GLn(Aa) and
τ2 ∈ GLn(Ac). Consider the following diagram.

Ana
τ1

// Ana
f

// Ia

Anc
τ−1

2
// Anc

g
// Ic

By hypothesis, f̂σ = ĝ, so that f̂τ1 = ĝτ−1
2 Therefore, we have the following commutative

diagram:

Anac
τ1

//

Id

Anac
bf

// Iac

Id

Anac
τ−1

2
// Anac

bg
// Iac

Therefore, Case 2, reduces to the Case 1. Hence the lemma follows. 2
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3.3 First Proof of Forster’s Conjecture

The aim of this section is to give a proof of Forster’s conjecture 3.3.3. We deduce it
from a theorem of Mandal (See 3.3.2).

Lemma 3.3.1 Let A be a ring and I an ideal of A[X ] containing a monic polynomial.
Let J be an ideal of A such that I + J [X ] = A[X ]. Then (I ∩A) + J = A.

Proof. Suppose that (I ∩ A) + J 6= A. Then there exists a maximal ideal m of A such
that (I ∩A) + J ⊂ m. Thus, m is a maximal ideal of A/I ∩A. Since I contains a monic
polynomial, the extension R = A/I ∩ A →֒ A[X ]/I = S is integral. Therefore, there
exists a maximal ideal M of A[X ] containing I such that the maximal ideal M of A[X ]/I
satisfies m = M ∩ A. Since J ⊂ m, we have I + J [X ] ⊂ M, a contradiction. Hence the
lemma follows. 2

The following theorem of Mandal (cf. [18]) generalises a result of N. Mohan Kumar
(cf. [23], pg. 161). We follow [18] (Theorem 1.2), [5] (Prop. 3.3) and [23].

Theorem 3.3.2 Let A be a Noetherian domain, I an ideal of A[X ] containing a monic

polynomial. Suppose that I/I2 is generated by n elements, where n ≥ dim
(
A[X]
I

)
+ 2.

Then I is generated by n elements.

Proof. Let b1, . . . , bn ∈ I generate I modulo I2. By assumption I contains a monic
polynomial f(X). The elements b1 + fp, b2, . . . , bn also generate I modulo I2 if p > 1.
Since f(X) is a monic polynomial, for sufficiently large p the element a1 = b1 + fp

is monic. Let J = I ∩ A. Since I contains monic polynomial, the extension A/J →֒
A[X ]/I is integral. Since the ideal

〈
J2[X ], a1

〉
contains a monic polynomial viz. a1, the

extension A/J2 →֒ A[X ]/
〈
J2[X ], a1

〉
is integral (the inclusion following from Lemma

1.9.25). Therefore, by 1.9.18, we have

dim

(
A[X ]

I

)
= dim

(
A

J

)
= dim

(
A

J2

)
= dim

(
A[X ]〈

J2[X ], a1

〉
)
.

Let B = A[X]〈
J2[X],a1

〉 , and bar denote the reduction modulo
〈
J2[X ], a1

〉
. Then n − 1

elements b2, . . . , bn generate I modulo I
2
. Since n ≥ dim

(
A[X]
I

)
+ 2, we have

n− 1 ≥ dim

(
A[X ]

I

)
+ 2 − 1 = dim

(
A[X ]

I

)
+ 1 = dim (B) + 1.

Therefore, using Theorem 3.1.11, it follows that I is generated by n − 1 elements, say
a2, . . . , an. Therefore, we have

〈
a1, a2, . . . , an

〉
+ J2[X ] = I. Since J2[X ] ⊂ I2, by

Lemma 3.1.9, there exists an ideal I ′ of A[X ] such that
〈
a1, a2, . . . , an

〉
= I ∩ I ′, where

I ′ + J2[X ] = A[X ]. Since a1, a2, . . . , an generate I ∩ I ′, I ′ contains a monic polynomial
viz. a1. Hence it follows from Lemma 3.3.1 that I ′ ∩ A + J2 = A. Therefore, I ′ ∩ A
contains an element of the form 1 + j for some j ∈ J . This implies that I ′1+j = A1+j [X ].

Since I ∩ I ′ =
〈
a1, a2, . . . , an

〉
, we have I1+j =

〈
a1, a2, . . . , an

〉
A1+j [X ]. Therefore, we

have surjection f : A1+j [X ]n ։ I1+j viz. ei 7→ ai(X).
On the other hand j ∈ J = I ∩ A implying that Ij = Aj [X ] and hence we have a

surjection g : Aj [X ]n ։ Ij viz. e1 7→ 1, ei 7→ 0 for i > 1.
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Since a1(X), . . . , an(X) generate Ij(1+j) = Aj(1+j)[X ], the row [a1(X), . . . , an(X)] is
unimodular in Aj(1+j)[X ]. Since a1(X) is monic in X , by Theorem 2.7.2, there exists a
matrix α(X,T ) ∈ GLn(Aj(1+j)[X,T ]) such that α(X, 0) = In and

α(X, 1)




a1(X)
a2(X)
.
.

an(X)




=




1
0
.
.
0



. (12)

Let C = Aj(1+j)[X ] and β(T ) = α(X,T ). Then β(T ) ∈ GLn(C[T ]) and β(0) = In. By
Lemma 2.6.1, β(T ) = α(X,T ) = τ1(X,T )τ2(X,T ) for some τ1(X,T ) ∈ GLn(A1+j [X,T ])
and τ2(X,T ) ∈ GLn(Aj [X,T ]). Putting T = 1 we see that σ(X) = α(X, 1) splits. Now,
by (12), the following diagram is commutative:

Aj(1+j)[X ]n
bf

// Ij(1+j)

Id

Aj(1+j)[X ]n
bg

//

σ(X)

OO

Ij(1+j)

where f̂ , ĝ are surjections induced by f and g, i.e. ĝ = f̂σ(X), where σ(X) =
τ1(X, 1)τ2(X, 1), τ1(X, 1) ∈ GLn(A1+j [X ]), τ2(X, 1) ∈ GLn(Aj [X ]) Therefore, by 3.2.4,
I is generated by n elements. This completes the proof. 2.

Corollary 3.3.3 (cf. [23], [34]) Let k be a field and p ⊂ k[X1, . . . , Xn] be a prime ideal
such that k[X1, . . . , Xn]/p is regular. Then p is generated by n elements.

Proof. Let p ⊂ k[X1, . . . , Xn] be such that k[X1, . . . , Xn]/p is regular. If ht(p) = 1,
then p is principal and there is nothing to prove. So, we assume that ht(p) ≥ 2. Using
automorphism of k[X1, . . . , Xn], cf. 1.10.3, we may assume that p contains a monic
polynomial in Xn. Let A = k[X1, . . . , Xn−1] andX = Xn. By the Forster-Swan theorem,
(cf. [9], [41]) p/p2 is generated by n elements. Since ht(p) ≥ 2, dim (A[X ]/p) ≤ n − 2.
Therefore, n ≥ dim (A[X ]/p) + 2. Now, by Mandal’s theorem, p is generated by n
elements. 2

3.4 On some Addition Principles

The aim of this section is to prove some addition principles (see 3.4.8, 3.4.9). We begin
this section with the following theorem.

Theorem 3.4.1 Let k be a field and m be a maximal ideal of k[X1, . . . , Xn]. Then m is
generated by n elements.

Proof. We prove the theorem by induction on number of variables n. Using 1.10.2, we
get ht(m) = n. Let A = k[X1, . . . , Xn−1]. Then dim(A[Xn]) = n = ht(m). Hence by
Lemma 1.8.3, ht(m∩A) ≥ n−1. But, as dim(A) = n−1, it follows that ht(m∩A) = n−1.
Therefore, m ∩A is a maximal ideal of A. Let m ∩A = m1. Then

k1[Xn] ∼=
A[Xn]

m1[Xn]
∼= A

m ∩A [Xn],
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where k1 = A/m1 is a field. Let bar denote reduction modulo m1[Xn]. Since k1[Xn] is a
PID, m is generated by a single element. By induction it follows that m1 is generated by
(n− 1) elements. Therefore, m is generated by n elements. 2

Similarly, one can prove the following corollary.

Corollary 3.4.2 Let k be a field and m1, . . . ,mr be a maximal ideals of k[X1, . . . , Xn].
Let I = m1 ∩ · · · ∩ mr. Then I is generated by n elements.

Lemma 3.4.3 (Chinese Remainder Theorem) Let A be a ring, I, J ideals of A such
that I + J = A. Let η : A → A/I ⊕ A/J be the homomorphism (of A-modules) defined
by η(a) = (a, a). Then η is surjective and ker(η) = I ∩ J .

Proof. It is clear that ker(η) = I ∩ J . Since I + J = A, 1 = x+ y, where x ∈ I, y ∈ J .
Let (r, s) ∈ A/I ⊕ A/J . Since rx + ry = r, η(ry) = (r, 0). Similarly, η(sx) = (0, s).
Hence η(ry + sx) = (r, s), showing that η is surjective. 2

Lemma 3.4.4 Let A be a ring, J1, J2 be ideals of A such that J1 + J2 = A. Let
J = J1 ∩ J2. Then J/J2 ∼= J1/J

2
1 ⊕ J2/J

2
2 as A-modules.

Proof. We define an A-linear map f : J → J1/J
2
1⊕J2/J

2
2 by x 7→ (x̄, x). Since J1+J2 =

A, we have J2
1 + J2

2 = A. We show that f is surjective. Let (r, s) ∈ J1/J
2
1 ⊕ J2/J

2
2 . We

choose x ∈ J2
1 , y ∈ J2

2 such that x + y = 1. Hence rx + ry = r. We have f(ry) = (r̄, 0)
and similarly, f(sx) = (0̄, s). Therefore, f(ry + sx) = (r̄, s).

Note that surjectivity of f can also be proved as follows. We consider as above an
element (r̄, 0) ∈ J1/J

2
1 ⊕J2/J

2
2 . We want an element x ∈ J1∩J2 such that (x̄, x) = (r̄, 0),

i.e. x− r ∈ J2
1 and x ∈ J2

2 . We will be done if we show that (J1 ∩J2 ∩J2
2 )+J2

1 = J1, i.e.
it is enough to show that J2

1 +J1 ∩J2
2 = J1. Now, multiplying the equation J1 +J2

2 = A
by J1 we get J2

1 + J1J
2
2 = J1. Hence the assertion follows. Similarly, we can show that

(0, s) is in the image of f . Hence f is surjective.
Since J2

1 + J2
2 = A, J2

1 ∩ J2
2 = J2

1J
2
2 and hence ker(f) = J2

1 ∩ J2
2 = J2

1J
2
2 = (J1J2)

2 =
(J1 ∩ J2)

2 = J2. Therefore, J/J2 ∼= J1/J
2
1 ⊕ J2/J

2
2 . Hence the lemma follows. 2

Lemma 3.4.5 Let A be a ring, I1, I2 ideals of A such that I1 + I2 = A. Let I = I1 ∩ I2.
Suppose that both I1/I

2
1 and I2/I

2
2 are generated by n elements. Then I/I2 is generated

by n elements.

Proof. Let g1, . . . , gn ∈ I1 and f1, . . . , fn ∈ I2 be generators of I1/I
2
1 and I2/I

2
2

respectively. We claim that (gi, fi) generate I1/I
2
1 ⊕ I2/I

2
2 . Let x ∈ I1/I

2
1 . Then

x =
∑n
i=1 λigi+c for some c ∈ I2

1 , where λi ∈ A, 1 ≤ i ≤ n. Since I1+I2 = A, λi = µi+νi,
where µi ∈ I1 and νi ∈ I2. Therefore, x =

∑n
i=1(µi + νi)gi + c =

∑n
i=1 νigi + d, where

d ∈ I2
1 . Since νifi = 0 in I2/I

2
2 we have, (x, 0) =

∑n
i=1 νi(gi, fi).

A similar computation works for an element of the form (0, y) for y ∈ I2/I
2
2 . Hence

it follows that the elements (gi, fi) generate I1/I
2
1 ⊕ I2/I

2
2 . Now, from Lemma 3.4.4, it

follows that I/I2 is generated by n elements. 2

Remark 3.4.6 The motivation for the above proof is the following : The surjections
(A/I1)

n
։ I1/I

2
1 and (A/I2)

n
։ I2/I

2
2 , given by gi and fi induce via the Chinese

remainder theorem, a surjection (A/I)
n ∼= (A/I1)

n ⊕ (A/I2)
n

։ I1/I
2
1 ⊕ I2/I

2
2 i.e. we

get n elements which generate I1/I
2
1 ⊕ I2/I

2
2 .

The following theorem is in ([36], Theorem 4). We follow ([6], Prop. 3.1).
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Theorem 3.4.7 Let A be a Noetherian domain with dim(A) = d. Let J1 and J2 be two
ideals of A of height n such that J1 + J2 = A. Assume that J1 and J2 are both generated
by n elements. Assume further that n ≥ d+3

2 . Then J1 ∩ J2 is generated by n elements.

Proof 1. Suppose J1 =
〈
a1, . . . , an

〉
and J2 =

〈
b1 . . . , bn

〉
. Since J1 + J2 = A, the

row [a1, . . . , an] is unimodular in A/J2, where bar denotes reduction modulo J2. Since
ht(J2) = n, dim (A/J2) ≤ d−n. By hypothesis, n ≥ d+3

2 ⇒ 2n ≥ d+3 ⇒ n ≥ d−n+3 ⇒
n ≥ dim (A/J2)+ 2. Therefore, by 2.1.10, there exists a matrix α ∈ En (A/J2) such that

α




a1

a2

.

.
an




=




1
0
.
.
0



.

By Lemma 2.1.13, there exists a lift, say σ of α in En(A). Hence




a′1
a′2
.
.
a′n




= σ




a1

a2

.

.
an




=




1
0
.
.
0




modulo J2 (13)

Hence J1 =
〈
a′1, . . . , a

′

n

〉
, where a′1 = 1 modulo J2 and a′i = 0 modulo J2 for i > 1.

Applying Lemma 3.1.12, we choose λ1, . . . , λn−1 ∈ A such that the ideal

J̃1 =
〈
a′1 + λ1a

′

n, . . . , a
′

n−1 + λn−1a
′

n

〉

satisfies the property that if p ⊃ J̃1 and a′n /∈ p, then ht(p) ≥ n− 1.
On the other hand, if p ⊃ J̃1 and a′n ∈ J̃1, then p ⊃

〈
a′1, . . . , a

′

n

〉
and since

ht
〈
a′1, . . . , a

′

n

〉
= ht(J1) = n, we have ht(p) ≥ n.

Let a′′i = a′i + λia
′

n, 1 ≤ i ≤ n − 1, a′′n = a′n. By the above results, ht(J̃1) =
ht
〈
a′′1 , . . . , a

′′

n−1

〉
≥ n− 1. Since a′n = 0 modulo J2, from equation (13) we have

(a′′1 , . . . , a
′′

n−1) = (1, 0, . . . , 0) modulo J2. (14)

Thus,
〈
a′′1 , . . . , a

′′

n−1

〉
+ J2 = A, i.e. J̃1 + J2 = A. Let bar denote the reduction modulo

J̃1. Since J̃1 + J2 = A, [b1, . . . , bn] ∈ Umn

(
A/J̃1

)
. As ht(J̃1) ≥ n− 1,

dim
(
A/J̃1

)
≤ d− (n− 1). (15)

Since n ≥ d+3
2 ⇒ n ≥ d − n + 3 ⇒ n ≥ d − (n − 1) + 2 ⇒ n ≥ dim

(
A/J̃1

)
+ 2. By

Theorem 2.1.10, there exists β ∈ En

(
A/J̃1

)
such that

β




b1
b2
.
.

bn




=




1
0
.
.
0



.
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Let τ ∈ En(A) be the lift of β. Then




b′1
b′2
.
.
b′n




= τ




b1
b2
.
.
bn




=




1
0
.
.
0




modulo J̃1. (16)

Hence J2 =
〈
b′1 . . . , b

′

n

〉
, where b′1 = 1 modulo J̃1 and b′i = 0 modulo J̃1 for i > 1. Using

Lemma 3.1.12, we choose µ1, . . . , µn−1 ∈ A such that J̃2 =
〈
b′1+µ1b

′

n, . . . , b
′

n−1+µn−1b
′

n

〉

satisfies the property that if p ⊃ J̃2 and b′n /∈ p, then ht(p) ≥ n− 1. As before, if p ⊃ J̃2

and b′n ∈ J̃2, then ht(p) ≥ n. Let b′′i = b′i + µib
′

n, 1 ≤ i ≤ n − 1, b′′n = b′n. Then
ht(J̃2) = ht

〈
b′′1 , . . . , b

′′

n−1

〉
≥ n− 1. Since b′n = 0 modulo J̃1 from equation (16), we have

(b′′1 , . . . , b
′′

n−1) = (1, 0, . . . , 0) modulo J̃1. (17)

Therefore, we have
〈
b′′1 , . . . , b

′′

n−1

〉
+ J̃1 = A. Hence J1 =

〈
a′′1 , . . . , a

′′

n

〉
and J2 =〈

b′′1 , . . . , b
′′

n

〉
where

〈
a′′1 , . . . , a

′′

n−1

〉
+
〈
b′′1 , . . . , b

′′

n−1

〉
= A, ht

〈
a′′1 , . . . , a

′′

n−1

〉
≥ n − 1,

and ht
〈
b′′1 , . . . , b

′′

n−1

〉
≥ n − 1. Consider the ideals I1 =

〈
a′′1 , . . . , a

′′

n−1, X − a′′n
〉

and

I2 =
〈
b′′1 , . . . , b

′′

n−1, X−b′′n
〉

of A[X ] and assume I = I1∩I2. In view of (1), I1+I2 = A[X ].

Now we have a natural map φ : A→ A[X ]/I1. Since a′′n 7→ X, φ is surjective. By 1.9.25,
ker(φ) =

〈
a′′1 , . . . , a

′′

n−1

〉
and hence

A

J̃1

=
A〈

a′′1 , . . . , a
′′

n−1

〉 ≃ A[X ]

I1
(18)

By (15), dim (A[X ]/I1) ≤ d− (n− 1). Similarly,

A

J̃2

=
A〈

b′′1 , . . . , b
′′

n−1

〉 ≃ A[X ]

I2
(19)

and dim (A[X ]/I2) ≤ d − (n − 1). Lemma 3.4.4 gives an isomorphism of A[X ]-modules
I/I2 ≃ I1/I

2
1 ⊕ I2/I2

2 . Since I1/I
2
1 and I2/I

2
2 are generated by n elements, it follows from

Lemma 3.4.5 that I/I2 is generated by n elements. Since I1 + I2 = A[X ], no prime ideal
of A[X ] contains both I1 and I2. Therefore,

dim

(
A[X ]

I

)
= Sup

(
dim

A[X ]

I1
, dim

A[X ]

I2

)

Using equations (18) and (19), we have dim (A[X ]/I) ≤ d − (n − 1). By hypothesis,

n ≥ d+3
2 ⇒ n ≥ dim

(
A[X]
I

)
+ 2. Since I/I2 is generated by n elements, it follows from

Theorem 3.3.2 that I is generated by n elements. Putting X = 0, we see that J = J1∩J2

is generated by n elements. This completes the proof. 2

Proof 2. As in the first proof assume that we have chosen generators a′′1 , . . . , a
′′

n of J1 and
b′′1 , . . . , b

′′

n of J2 such that
〈
a′′1 , . . . , a

′′

n−1

〉
+
〈
b′′1 , . . . , b

′′

n−1

〉
= A. Let J̃1 =

〈
a′′1 , . . . , a

′′

n−1

〉

and J̃2 =
〈
b′′1 , . . . , b

′′

n−1

〉
. Then there exist elements c ∈ J̃1 and d ∈ J̃2 such that c+d = 1.

Now, (J1 ∩ J2)c =
〈
b′′1 , . . . , b

′′

n−1, b
′′

n

〉
c

and (J1 ∩ J2)d =
〈
a′′1 , . . . , a

′′

n−1, a
′′

n

〉
d
. This gives

surjections, f : And ։ (J1 ∩ J2)d (sending ei 7→ a′′i ) and g : Anc ։ (J1 ∩ J2)c (sending
ei 7→ b′′i ). By the choice of c, the row [a′′1 , . . . , a

′′

n−1] ∈ Umn−1(Ac). Therefore, by 2.1.6,
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there exists τ ∈ En(Ac) such that

τ




a′′1
a′′2
.
.
a′′n




=




1
0
.
.
0



.

Similarly, there exist τ ′ ∈ En(Ad) such that

τ ′




b′′1
b′′2
.
.
b′′n




=




1
0
.
.
0




Therefore,

τ ′
−1
τ




a′′1
a′′2
.
.
a′′n




=




b′′1
b′′2
.
.
b′′n



.

By 2.6.6, τ ′
−1
τ = α1α2, where α1 ∈ GLn(Ac), α2 ∈ GLn(Ad) and

α1α2




a′′1
a′′2
.
.
a′′n




=




b′′1
b′′2
.
.
b′′n



.

Hence the following diagram is commutative:

Ancd
bf

// Acd

Id

Ancd
bg

//

α1α2

OO

Acd

Using 3.2.4, it follows that J = J1 ∩ J2 is generated by n elements. 2

The following Corollary generalises 3.4.2.

Corollary 3.4.8 Let A be a Noetherian domain with dim(A) = d ≥ 3. Let J1 and J2 be
ideals of A of height d such that J1 + J2 = A. Suppose that J1 and J2 are generated by
d elements. Then so is J1 ∩ J2.

The following theorem ([37], Theorem 2.3) settles the Corollary in the case where
d = 2. We give two proofs. The first proof follows [5], Theorem 3.2. The second proof
follows [20], Theorem 2.3.

Theorem 3.4.9 Let A be a Noetherian domain with dim(A) = 2. Let J1, J2 ⊂ A be
ideals of height 2 such that J1 +J2 = A. Suppose that J1, J2 are generated by 2 elements.
Then J1 ∩ J2 is also generated by 2 elements.
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Proof 1. Suppose J1 =
〈
f1, f2

〉
, J2 =

〈
g1, g2

〉
. Since ht(J2) = 2 and dim(A) = 2, it

follows that
√
J2 = ∩ni=1mi, where mi’s are maximal ideals of A. Since J1 + J2 = A,

J1 * mi for all i. Therefore, by Theorem (1.2.1), J1 =
〈
f1, f2

〉
* ∪ni=1mi. Using Lemma

(1.2.2), we choose λ ∈ A such that f1 + λf2 /∈ ∪ni=1mi. Then J1 =
〈
f ′

1, f2
〉
, where

f ′

1 = f1 + λf2 satisfies
〈
f ′

1

〉
+ mi = A for i = 1, 2, . . . , n and hence

〈
f ′

1

〉
+
√
J2 =

〈
f ′

1

〉
+ ∩ni=1mi = A.

We claim, (1 + f ′

1A)∩J2 6= φ. Note that since
〈
f ′

1

〉
+
√
J2 = A,

〈
f ′

1

〉
+ J2 = A. So, there

exists c ∈ A such that g − cf ′

1 = 1, where g ∈ J2. This implies, 1 + cf ′

1 ∈ J2, hence the
claim.

Now, J = J1 ∩ J2 implies that J =
〈
f ′

1, f2
〉
∩
〈
g1, g2

〉
. Therefore, we have surjective

maps α : A2
1+f ′

1
c ։ J1+f ′

1
c = (J1 ∩ J2)1+f ′

1
c = (J1)1+f ′

1
c, sending e1 7→ f ′

1 and e2 7→ f2,

and β : A2
f ′

1

։ Jf ′

1
= (J1 ∩ J2)f ′

1
= (J2)f ′

1
sending ei 7→ gi. Since f ′

1 ∈ J1 and (1 + f ′

1c) ∈
J2, these two maps give surjections

α̂, β̂ : A2
f ′

1
(1+f ′

1
c) ։ Jf ′

1
(1+f ′

1
c) = Af ′

1
(1+f ′

1
c),

where α̂ and β̂ be the surjections induced from α and β. We show that there exists
σ ∈ GL2(Af ′

1
(1+f ′

1
c)) such that the diagram

A2
f ′

1
(1+f ′

1
c)

bα
// Af ′

1
(1+f ′

1
c)

Id

A2
f ′

1
(1+f ′

1
c)

bβ
//

σ

OO

Af ′

1
(1+f ′

1
c)

commutes and σ = γ1γ2, where γ1 ∈ GLn(A1+f ′

1
c) and γ2 ∈ GLn(Af ′

1
).

Now, f ′

1 is a unit in Af ′

1
. So by 2.1.6, there exists τ ∈ E2(Af ′

1
) such that

τ

(
f ′

1

f2

)
=

(
1
0

)
.

As 1 + f ′

1c ∈
〈
g1, g2

〉
, it follows that [g1, g2] ∈ Um2

(
A1+f ′

1
c

)
. Since any unimodular row

of length 2 is completable, we have τ ′ ∈ SL2

(
A1+f ′

1
c

)
such that

τ ′
(

1
0

)
=

(
g1
g2

)
.

Let σ = ττ ′. Then α̂σ = β̂. Since τ ∈ E2(Af ′

1
), by 2.6.8, there exist γ1 ∈ GL2(A1+f ′

1
c)

and γ2 ∈ GL2(Af ′

1
) such that σ = ττ ′ = γ1γ2. Now the result follows by applying Lemma

3.2.4 to the above diagram. 2

Proof 2. Let the notation be as in Proof 1. Let J1 =
〈
f ′

1, f2
〉
, J2 =

〈
g1, g2

〉
, where〈

f ′

1

〉
+ J2 = A. Let J = J1 ∩ J2. We claim that the ideal I =

〈
f ′

1, X − 1
〉
∩
〈
g1, g2

〉
A[X ]

of A[X ] is generated by two elements. If so, then

〈
f ′

1, X − 1
〉
∩
〈
g1, g2

〉
A[X ] =

〈
p1(X), p2(X)

〉

where p1(X), p2(X) ∈ I. Putting X = 1 + f2, it follows that J1 ∩ J2 is generated by two
elements.
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Proof of the claim: Let I1 =
〈
f ′

1, X − 1
〉
, I2 =

〈
g1, g2

〉
A[X ] and I = I1 ∩ I2. Since

I(0) =
〈
g1, g2

〉
, we have a surjection γ : A2

։ I(0) viz . ei 7→ gi, i = 1, 2. Since〈
f ′

1

〉
+ J2 = A, we can choose an element c ∈ A such that 1 + f ′

1c ∈
〈
g1, g2

〉
= J2. We

want to define surjections

α : A1+f ′

1
c[X ]2 ։ I1+f ′

1
c =

〈
f ′

1, X − 1
〉
A1+f ′

1
c[X ]

β : Af ′

1
[X ]2 ։ If ′

1
=
〈
g1, g2

〉
Af ′

1
[X ]

such that α(0) = γ1+f ′

1
c and β(0) = γf ′

1
, where γ1+f ′

1
c and γf ′

1
are induced from γ. Let

us define β(e1) = g1, β(e2) = g2.
To define α we first define α′ : A1+f ′

1
c[X ]2 ։ I1+f ′

1
c, viz. e1 7→ f ′

1, e2 7→ X−1. Then

α′(0)(e1) = f ′

1, α
′(0)(e2) = −1. Note that

〈
g1, g2

〉
∈ Um2(A1+f ′

1
c), as 1 + f ′

1c ∈
〈
g1, g2

〉
.

Therefore, there exists τ ∈ GL2(A1+f ′

1
c) such that

τ

(
f ′

1

−1

)
=

(
g1
g2

)
.

Let

τ

(
f ′

1

X − 1

)
=

(
h1(X)
h2(X)

)
. (20)

Since I1+f ′

1
c =

〈
f ′

1, X − 1
〉

and τ ∈ GL2(A1+f ′

1
c[X ]), it follows that

〈
h1(X), h2(X)

〉
=

I1+f ′

1
c. Putting X = 0 in (20), we see that

τ

(
f ′

1

−1

)
=

(
h1(0)
h2(0)

)
.

Now, we define α : A1+f ′

1
c[X ]2 ։ I1+f ′

1
c as follows: α(e1) = h1(X), α(e2) = h2(X).

Since If ′

1
(1+f ′

1
c) = A(1+f ′

1
c)f ′

1
[X ], we get

〈
h1(X), h2(X)

〉
∈ Um2(Af ′

1
(1+f ′

1
c)[X ]). By 2.7.4,

there exists a σ(X) ∈ GL2(Af ′

1
(1+f ′

1
c)[X ]) such that σ(0) = I2 and

σ(X)

(
h1(X)
h2(X)

)
=

(
h1(0)
h2(0)

)
= τ

(
f ′

1

−1

)
=

(
g1
g2

)
.

Hence the following diagram is commutative:

Af ′

1
(1+f ′

1
c)[X ]2

bα
// If ′

1
(1+f ′

1
c)

Id

Af ′

1
(1+f ′

1
c)[X ]2

bβ
//

σ(X)

OO

If ′

1
(1+f ′

1
c)

Since σ(0) = I2, by 2.6.1, σ(X) splits and hence the claim follows from (3.2.4). Hence
the result follows. 2

4 Another Proof of Förster’s Conjecture

4.1 Some useful Lemmas

Lemma 4.1.1 Let A be a domain and b(6= 0) ∈ A. Let
〈
b
〉

=
〈
c1, . . . , cn

〉
, where ci ∈ A.

Suppose ci = bdi, di ∈ A. Then [d1, . . . , dn] ∈ Umn(A).
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Proof. By hypothesis, b =
∑n

i=1 gici =
∑n
i=1 gibdi for some gi, di ∈ A. Hence

b (1 −∑n
i=1 gidi) = 0. Since A is a domain,

∑n
i=1 gidi = 1, proving the assertion. 2

Lemma 4.1.2 Let A be a Noetherian domain of finite dimension and s ∈ A. Let T =
A
s
〈
1+sA

〉. Then dim(T ) < dim(A).

Proof. We claim that for any maximal ideal m ofA either m∩
〈
s
〉
6= φ or m∩

〈
1+sA

〉
6= φ

If s ∈ m we are through. Otherwise,
〈
m, s

〉
= A. This implies that there exists c ∈ m, d ∈

A such that 1 = c + ds. Thus, c = 1 − ds ∈ m. Hence m ∩
〈
1 + sA

〉
6= φ, proving the

claim. Thus, no maximal ideal of A survives in the localized ring T = A
s
〈
1+sA

〉, i.e.

dim(T ) < dim(A). 2

Lemma 4.1.3 Let A be a Noetherian domain and S ⊂ A a multiplicative closed set. If
I ⊂ A is an ideal such that

S−1I =
〈 c1
s1
, . . . ,

ck
sk

〉
, si ∈ S (1 ≤ i ≤ k),

then there exists s ∈ S such that Is =
〈
c1
s1
, . . . , ck

sk

〉
.

Proof. Since A is Noetherian, I is finitely generated. Suppose g1, . . . , gn generate I.
Then gi

1 ∈ S−1I. Hence gi

1 =
∑k

j=1
µi

s′
ij

ci

sj
, where s′ij ∈ S, µij ∈ A. Let s′′i = Πk

j=1s
′

ijsj

and s = Πn
i=1s

′′

i . Hence Is =
〈
c1
s1
, . . . , ck

sk

〉
. 2

Theorem 4.1.4 Let A be a domain with dim(A) = d and I ⊂ A an ideal. Suppose I/I2

is generated by n elements, where n ≥ d+ 1. Then I is generated by n elements.

Remark 4.1.5 This theorem has already been proved (3.1.11). We give another proof.

Proof. Let a1, . . . , an ∈ I generate I modulo I2. Then
〈
a1, . . . , an

〉
+ I2 = I. Therefore,

by 3.1.7, there exists e ∈ I such that e(1 − e) ∈
〈
a1, . . . , an

〉
and I =

〈
a1, . . . , an, e

〉
.

Since e ∈ I, Ie = Ae. Since 1 − e is unit in A1−e and e(1 − e) ∈
〈
a1, . . . , an

〉
, e ∈〈

a1, . . . , an
〉
A1−e. Since I =

〈
a1, . . . , an, e

〉
we have

I1−e =
〈
a1, . . . , an

〉
A1−e. (21)

Thus, we have surjections: f1 : An1−e ։ I1−e, sending ei 7→ ai and f2 : Ane ։ Ie, sending

e1 7→ 1 and ei 7→ 0 for i > 1. Since e(1 − e) =
∑n

i=1 λiai,
∑n
i=1

(
λi

e(1−e)

)
ai = 1. Hence

the row [a1, . . . , an] is unimodular in Ae(1−e). Since dim(A) = d, by Lemma 4.1.2, we

have dim
(
Ae(1+eA)

)
≤ d − 1. Also, n ≥ d + 1 = d − 1 + 2, n ≥ dim

(
Ae(1+eA)

)
+ 2.

Therefore, by 2.1.10, there exists a matrix σ ∈ En
(
Ae(1+eA)

)
such that

σ




a1

a2

.

.
an




=




1
0
.
.
0



.

Let σ = Πr
i=1eij(λij), λij ∈ Ae(1+eA). Since there are only finitely many λij ’s, we can

choose b ∈ A such that σ ∈ En
(
Ae(1+eb)

)
. Let 1 + ef = (1 − e)(1 + eb). Hence from
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equation (21), we have a surjection f3 : An1+ef ։ I1+ef =
〈
a1, . . . , an

〉
1+ef

induced from

f1. Thus, we have the following commutative diagram:

Ane(1+ef)

bf3
// Ie(1+ef) =

〈
a1, . . . , an

〉
= Ae(1+ef)

Ane(1+ef)

bf2
//

σ

OO

Ie(1+ef) =
〈
1, 0, . . . , 0

〉
= Ae(1+ef)

where f̂2 and f̂3 are induced surjections from f2 and f3. But, since σ is elementary by
2.6.5 and 2.6.4, σ splits. Using 3.2.4, it follows that I is generated by n elements. This
completes the proof. 2

4.2 On the Eisenbud-Evans conjecture

The aim of this section is to prove theorem 4.2.2 of N. Mohan Kumar (cf. [23], §3
Theorem 2) (see also [34], Theorem 1) which settles a conjecture of Eisenbud-Evans. We
first prove a special case of 4.2.1. The proofs of 4.2.1 and 4.2.2 are the ones given in [5].
We deduce Forster’s conjecture 4.2.3 from 4.2.2.

Theorem 4.2.1 Let A be a Noetherian domain with dim(A) = d and I an ideal of A[X ]
such that ht(I) ≥ 2. Suppose that I/I2 generated by n elements, where n ≥ d+ 1. Then
I is generated by n elements.

Proof. Since ht(I) ≥ 2, using 1.8.3, it follows that ht(I ∩A) ≥ 1. Let J = I ∩A. Then
J 6= 0. We choose s ∈ J2 ⊂ I2 such that s 6= 0. Consider the map A[X ] → A[X ]/sA[X ]
sending I 7→ I, where bar denotes reduction modulo sA[X ]. Since s ∈ I2,

I

I
2 =

I+
〈
s
〉

〈
s
〉

I2+
〈
s
〉

〈
s
〉

≃ I +
〈
s
〉

I2 +
〈
s
〉 ≃ I

I2
.

Since I/I2 is generated by n elements we can choose a1(X), . . . , an(X) ∈ I such that〈
a1(X), . . . , an(X)

〉
+ I2 = I, so that a1(X), . . . , an(X) generate I/I

2
. We have

n ≥ dim(A) + 1 ≥ dim(A[X ]) − 1 + 1 ≥ dim

(
A[X ]

sA[X ]

)
+ 1.

By Theorem 3.1.11, we can choose b1(X), . . . , bn(X) ∈ I such that b1(X), . . . , bn(X) gen-
erate I. Therefore,

〈
b1(X), . . . , bn(X), s

〉
= I. Since s ∈ J2 ⊂ I2, by Lemma 3.1.16, we

can choose ci(X) ∈ A[X ] such that if di(X) = bi(X)+sci(X), then
〈
d1(X), . . . , dn(X)

〉
=

I ∩ I1, where I1 + sA[X ] = A[X ] and ht(I1) ≥ n ≥ d+ 1.
It follows from Lemma 2.8.3 that I1 contains a monic polynomial and hence using

Lemma 3.3.1, we get
〈
s
〉

+ I1 ∩ A = A. Thus, I1 ∩ A contains an element of the form

1 + sa for some a ∈ A. Let S =
〈
1 + sA

〉
. Then S−1I1 = S−1A[X ] and hence

S−1
〈
d1(X), . . . , dn(X)

〉
= S−1I ∩ S−1I1 = IS

By Lemma (4.1.3), there exists g ∈ A such that I1+sg =
〈
d1(X), . . . , dn(X)

〉
1+sg

. Also,

since s ∈ I, 1 ∈ Is. Therefore, we have surjections: f : A1+sg[X ]n ։ I1+sg , sending
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ei 7→ di(X) and f ′ : As[X ]n ։ Is, sending e1 7→ 1, ei 7→ 0 for i > 1. By Lemma 4.1.2,
dim (AsS) < dim(A) = d. Hence, n ≥ d+1 = d−1+2 ≥ dim (AsS)+2. Let B = AsS [X ].
Since s ∈ I, IsS = AsS [X ]. Since S−1

〈
d1(X), . . . , dn(X)

〉
= IS , it follows that the row

[d1(X), . . . , dn(X)] is unimodular in AsS [X ]. By Lemma 2.8.4, there exists a matrix
σ(X,T ) ∈ GLn(B[T ]) such that σ(X, 0) = In (which implies that σ(X,T ) ∈ SLn(B[T ]))
and

σ(X, 1)




d1(X)
d2(X)
.
.

dn(X)




=




1
0
.
.
0



.

Since σ ∈ SLn(AsS [X,T ]), we obtain c ∈ A such that σ(X,T ) ∈ SLn
(
As(1+sc)[X,T ]

)
.

Let 1 + sh = (1 + sc)(1 + sg). Then we have the following commutative diagram.

As(1+sh)[X ]n
bf

// Is(1+sh)

Id

=
〈
d1(X), . . . , dn(X)

〉

As(1+sh)[X ]n
bf ′

//

σ(X,1)

OO

Is(1+sh) =
〈
1, 0, . . . , 0

〉

where f̂ , f̂ ′ are induced by f and f ′. Since σ(X, 0) = In, by 2.6.5, σ(X, 1) splits. Using
3.2.4, it follows that I is generated by n elements. 2

Now we give another proof of the Theorem 4.2.1, in which we need not assume that
ht(I) ≥ 2.

Theorem 4.2.2 Let A be a Noetherian domain with dim(A) = d. Let I be an ideal of
A[X ]. Suppose I/I2 is generated by n elements, where n ≥ d + 1. Then I is generated
by n elements.

Proof. Let S′ be the multiplicative closed subset A − {0}. Then S′−1
A is a field

and hence S′−1
A[X ] is a PID. So, there exists an element g(X) ∈ I such that the ideal

S′−1
I of S′−1

A[X ] is generated by g(X). Using Lemma 4.1.3, we choose s ∈ S′ such
that Is =

〈
g(X)

〉
s
. Let f(X) ∈ I2, f(X) 6= 0 and sf(X) = h(X). Then h(X) 6=

0, as A is a domain. Since h(X) 6= 0, dim
(
A[X ]/

〈
h(X)

〉)
≤ d. Now, consider the

natural surjection A[X ] ։ A[X ]/
〈
h(X)

〉
. Since I/I2 is generated by n elements, I/I

2

is also generated by n elements, where bar denote the reduction modulo h(X). As
n ≥ dim

(
A[X ]/

〈
h(X)

〉)
+ 1, using Theorem 3.1.11, I is generated by n elements, say

a1(X), . . . , an(X). Hence I =
〈
a1(X), . . . , an(X), h(X)

〉
, where h(X) ∈ I2. Applying

Lemma 3.1.16, we can find c1(X), . . . , cn(X) in A[X ] such that

〈
a1(X) + c1(X)h(X), . . . , an(X) + cn(X)h(X)

〉
= I ∩ I1,

where ht(I1) ≥ d+1 and
〈
h(X)

〉
+I1 = A[X ]. Since h(X) = sf(X), sA[X ]+I1 = A[X ].

Let bi(X) = ai(X) + ci(X)h(X), 1 ≤ i ≤ n.
Since ht(I1) ≥ d + 1, by Lemma 2.8.3, I1 contains a monic polynomial and hence

using Lemma 3.3.1, we get
〈
s
〉

+ I1 ∩ A = A. Thus, I1 ∩ A contains an element of
the form 1 + sa, where a ∈ A. Let S = 1 + sA. Then S−1I1 = S−1A[X ]. Since〈
b1(X), . . . , bn(X)

〉
= I ∩ I1, S−1I = IS = S−1

〈
b1(X), . . . , bn(X)

〉
. Therefore, there are

surjections: AS [X ]n ։ IS , sending ei 7→ bi(X) and As[X ]n ։ Is, sending e1 7→ g(X),
ei 7→ 0 for i > 1.
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These two surjections induce surjections AsS [X ]n ։ IsS , sending ei 7→ bi(X) and
AsS [X ]n ։ IsS , sending e1 7→ g(X), ei 7→ 0 for i > 1. Since

〈
b1(X), . . . , bn(X)

〉
sS

=

IsS =
〈
g(X)

〉
sS

, we have bi(X) = g(X)fi(X), where fi(X) ∈ AsS [X ] (1 ≤ i ≤ n). By
Lemma 4.1.1, [f1(X), . . . , fn(X)] is unimodular row in the ring AsS([X ]). As in (4.2.2),
we see that there exists a matrix σ(X,T ) ∈ SLn (AsS [X,T ]) such that σ(X, 0) = In and

σ(X, 1)




f1(X)
f2(X)
.
.

fn(X)




=




1
0
.
.
0



.

Hence σ(X, 1)




b1(X)
b2(X)
.
.

bn(X)




=




g(X)
0
.
.
0



.

Now, proceeding as in Theorem 4.2.1, we see that I is generated by n elements. 2

Corollary 4.2.3 (Forster’s Conjecture) Let k be a field and p ⊂ A = k[X1, . . . , Xn]
be a prime ideal such that A/p is regular. Then p is generated by n elements.

Proof. By the Forster-Swan theorem, p/p2 is generated by n elements. The corollary
now follows from 4.2.2. 2

4.3 On a variant of Mandal’s Theorem

Let A be a Noetherian ring. Let I ⊂ A[X ] be an ideal. Then we have the following
diagram :

I //

X=0

��

I/I2

X=0

��

I(0) // I(0)/I(0)2

Suppose I contains a monic polynomial and I/I2 is generated by n elements, where
n ≥ dim(A[X ]/I)+2. Then by Theorem (3.3.2), I is generated by n elements. Therefore,
I(0) is also generated by n elements. Let a1, . . . , an generate I(0). It is a quite natural
to ask whether a1, . . . , an can be lifted to a set of generators of I. We have the following
theorem due to Mandal. This says that the answer to the above question is affirmative
if the corresponding set of generators a1, . . . , an of I(0)/I(0)2 can be lifted to generators
g1(X), . . . , gn(X) of I/I2.

Theorem 4.3.1 (cf. [19]) Let A be a Noetherian ring. Let I ⊂ A[X ] be an ideal
containing a monic polynomial. Suppose I/I2 is generated by n elements, where n ≥
dim(A[X ]/I)+2. Suppose I(0) =

〈
a1, . . . , an

〉
and the generators a1, . . . , an of I(0)/I(0)2

can be lifted to the generators g1(X), . . . , gn(X) of I/I2. Then there exist a set of gen-
erators η1(X), . . . , ηn(X) of I such that ηi(0) = ai.

Proof. By hypothesis,
〈
g1(X), . . . , gn(X)

〉
+ I2 = I and gi(0) − ai ∈ I(0)2. Now, we

split the proof of the theorem in four steps.

58



Step 1. In this step we change gi(X) to hi(X) for 1 ≤ i ≤ n, so that

〈
h1(X), . . . , hn(X)

〉
+ I2 = I (22)

and hi(0) = ai for 1 ≤ i ≤ n. We consider the elements ai− gi(0). Note that ai− gi(0) ∈
I(0)2. Since there is a natural surjection I2 → I(0)2, there exists λi(X) ∈ I2 such that
λi(0) = ai− gi(0), 1 ≤ i ≤ n. We set hi(X) = λi(X)+ gi(X). Then hi(0) = ai and since
λi(X) ∈ I2, hi(X) ≡ gi(X) modulo I2. Further, by choosing a monic polynomial f ∈ I
and replacing h1 by h1 +Xfp for large p > 1, we may assume that h1 is monic.

Step 2. In this step we shall prove that
〈
h1(X), . . . , hn(X)

〉
+ I2X = I. Suppose

the left hand side is equal to K. Using Lemma 3.1.5, it is enough to show that (i)
K + I2 = I (ii) V (K) = V (I). Since hi(X) ∈ K, (i) follows from (22). Also, K ⊂ I
implies V (I) ⊂ V (K). So, to prove (ii) we have to show that V (K) ⊂ V (I).

Let p ∈ V (K). Then I2X ⊂ p. Hence p ⊃ I2 or X ∈ p. If p ⊃ I2 then as p is a
prime ideal, p ⊃ I. On the other hand if X ∈ p, then p ⊃

〈
h1(0), . . . , hn(0)

〉
. Hence

p ⊃
〈
I(0), X

〉
⊃ I. Thus, V (K) ⊂ V (I).

Step 3. By Lemma 3.1.9, it follows that there exists some d(X) ∈ I2X such that〈
h1(X), . . . , hn(X), d(X)

〉
= I. Let J = I∩A. Now, we consider the ring S = A[X]〈

J2[X],h1(X)
〉 .

Let bar denote reduction modulo
〈
J2[X ], h1(X)

〉
. Since n ≥ dim (A[X ]/I) + 2, as

in 3.3.2, n − 1 ≥ dim(S) + 1. Since I =
〈
h2(X), . . . , hn(X), d(X)

〉
, where d(X) ∈ I2,

using 3.1.16, we can find λi(X) ∈ A[X ], 2 ≤ i ≤ n, such that I =
〈
h′2(X), . . . , h′n(X)

〉
,

where h′i(X) = hi(X) + λi(X)d(X). Note that since d(X) ∈ I2X , h′i(0) = hi(0) = ai.
Therefore,

〈
h1(X), h′2(X), . . . , h′n(X)

〉
+ J2[X ] = I. By Lemma 3.1.9,

〈
h1(X), h′2(X), . . . , h′n(X)

〉
= I ∩ I ′,

where I ′ +J2[X ] = A[X ]. Since h1(X) ∈ I ′ is monic, by Lemma 3.3.1, I ′ ∩A+J2 = A.

Step 4. It is clear from Step 3, that I ′ contains an element of the form 1+j, where j ∈ J .
Therefore, (I ∩ I ′)1+j = I1+j =

〈
h1(X), h′2(X), . . . , h′n(X)

〉
. Also, j ∈ J = I ∩A implies

that Ij = Aj [X ]. Since j ∈ J , j ∈ I(0) =
〈
a1, . . . , an

〉
, j =

∑n
i=1 λiai, for some λi ∈ A.

That means 1 =
∑n

i=1
λi

j ai ∈ I(0)j . Therefore, we have surjections: A1+j [X ]n ։ I1+j
sending e1 7→ h1(X) and ei 7→ h′i(X) for 2 ≤ i ≤ n, and Aj [X ]n ։ Ij = Aj [X ] sending
ei 7→ ai. These two maps induce surjections; Aj(1+j)[X ]n ։ Ij(1+j) = Aj(1+j)[X ]
viz. e1 7→ h1(X), ei 7→ h′i(X) for 2 ≤ i ≤ n. Aj(1+j)[X ]n ։ Ij(1+j) = Aj(1+j)[X ]
viz. ei 7→ ai. Let f1(X) = h1(X) and fi(X) = h′i(X) for 2 ≤ i ≤ n. We have
two unimodular rows [f1(X), f2(X), . . . , fn(X)] and [a1, . . . , an] in Aj(1+j)[X ] such that
fi(0) = ai. Since f1(X) is monic, by Lemma 2.7.4, there exists τ(X) ∈ GLn(Aj(1+j)[X ])
such that τ(0) = In and

τ(X)




f1(X)
f2(X)
.
.

fn(X)




=




a1

a2

.

.
an



.
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This implies that τ(X) = τ1(X)τ2(X), where τ2(X) ∈ GLn(A1+j [X ]) with τ2(0) = In
and τ1(X) ∈ GLn(Aj [X ]) with τ1(0) = In. Let

τ2(X)




f1(X)
f2(X)
.
.

fn(X)




=




µ1(X)
µ2(X)
.
.

µn(X)




and τ1(X)−1




a1

a2

.

.
an




=




ν1(X)
ν2(X)
.
.

νn(X)



.

Then
〈
µ1(X), . . . , µn(X)

〉
= I1+j , and

〈
ν1(X), . . . , νn(X)

〉
= Ij and µi(X) = νi(X) in

Ij(1+j). Let ηi(X) ∈ I, be the pull back of (µi(X), νi(X)). By 3.2.3, it follows that

I =
〈
η1(X), . . . , ηn(X)

〉
. Since τ1(0) = τ2(0) = In, µi(0) = fi(0) = ai and νi(0) = ai.

Since ηi(X) ∈ I is the pullback of (µi(X), νi(X)), ηi(0) ∈ I(0) is the pullback of (ai, ai).
Therefore, ηi(0) = ai. This completes the proof. 2

Appendix

Some topological examples: There are many useful analogies between topology
and algebra. This appendix contains some topological examples. Some of these examples
show that the various assumptions made in proving some of the theorems in this paper
cannot be dropped. The facts in Topology used in this section are contained in [25].

Let A be a ring and I ⊂ A is an ideal. The following example shows that the canonical
map SL2(A) → SL2(A/I) is not surjective. Before proving this we prove the following
useful lemmas.

Lemma 4.3.2 Let A be a field or a local ring. Then SLn(A) = En(A).

Proof. We prove the lemma by induction on n. Let α ∈ SLn(A). We show that there
exist β, γ ∈ En(A) such that βαγ = In. It follows that α = β−1γ−1 ∈ En(A). It
is enough to show that one can transform α to In by performing elementary row and
column operations. Using 2.1.7, we can transform the first column of α to (1, 0, . . . , 0)t.
Thus, there exists β1 ∈ En(A) such that

β1α =

(
1 ∗
0 τ

)

(where τ ∈ SLn−1(A)). Using 2.1.6, we can transform the first row of β1α to (1, 0, . . . , 0).
Thus,

β1αγ1 =

(
1 0
0 τ

)

where γ1 ∈ En(A). Now, by induction there exist β2, γ2 ∈ En−1(A) such that β2τγ2 =

In−1. Let β′

2 =

(
1 0
0 β2

)
and γ′2 =

(
1 0
0 γ2

)
. Then β′

2β1αγ1γ
′

2 = In. Setting

β = β′

2β1 and γ = γ1γ
′

2 the lemma follows. 2

Lemma 4.3.3 The group SLn(R) is path connected.

Proof. By Lemma 4.3.2, SLn(R) = En(R). Therefore, any σ ∈ SLn(R) can be written
as σ = Πk

i=1Eij(λ), λ ∈ R. The map [0, 1] → SLn(R) given by t 7→ Πk
i=1Eij(λt) gives a

path from In to σ, showing that SLn(R) is path connected. 2
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Definition 4.3.4 The group On(R) is the subgroup of SLn(R) consisting of matrices
α ∈ SLn(R) such that ααt = In. We define SOn(R) = SLn(R) ∩On(R).

Example 4.3.5 (See 2.1.13)

We consider the ring R[X,Y, Z, T ] and its ideal
〈
XY − ZT − 1

〉
. Then the natural map

SL2(R[X,Y, Z, T ]) → SL2

(
R[X,Y, Z, T ]〈
XY − ZT − 1

〉
)

is not surjective. In fact, there is no lift of the matrix
(
X Z
T Y

)
∈ SL2(R[X,Y, Z, T ])〈

XY − ZT − 1
〉

to a matrix belonging to SL2(R[X,Y, Z, T ]). We give a proof due to C.P. Ramanujam,
cf. ([30], pg. 11).

Suppose to the contrary there exists τ ∈ SL2(R[X,Y, Z, T ]) such that

τ =

(
f11(X,Y, Z, T ) f12(X,Y, Z, T )
f21(X,Y, Z, T ) f22(X,Y, Z, T )

)
lifts

(
X Z
T Y

)
.

This implies that

1) f11(X,Y, Z, T )−X = (XY − ZT − 1)h11(X,Y, Z, T )

2) f12(X,Y, Z, T ) − Z = (XY − ZT − 1)h12(X,Y, Z, T )

3) f21(X,Y, Z, T )− T = (XY − ZT − 1)h21(X,Y, Z, T )

4) f22(X,Y, Z, T )− Y = (XY − ZT − 1)h22(X,Y, Z, T )

where hij(X,Y, Z, T ) ∈ R[X,Y, Z, T ]. We now define a map r : M2(R) → SL2(R) as
follows:

r

(
a b
c d

)
=

(
f11(a, b, c, d) f12(a, b, c, d)
f21(a, b, c, d) f22(a, b, c, d)

)
.

In view of equations 1, 2, 3, 4, if ad− bc = 1, r

(
a b
c d

)
=

(
a b
c d

)
. Hence the map

r : M2(R) → SL2(R) is a retraction.
Therefore, the map r∗ : π1(M2(R), I2) → π1(SL2(R), I2) is surjective. Now, since

M2(R) ≈ R4, π1(M2(R), I2) is a trivial group. We prove that π1(SL2(R), I2) is not a
trivial group and that will yield the required contradiction.

There is an inclusion map i : SO2(R) →֒ SL2(R). Using the Gram-Schmidt orthogo-
nalization process we get a map r′ : SL2(R) → O2(R). Note that r′(τ) = τ if τ ∈ SO2(R).
We also have the determinant map det : O2(R) → {1,−1}. As SL2(R) is path connected
and det(r′(I2)) = 1, the image of det(r′) = {1}. This shows that r′(SL2(R)) = SO2(R)
and r′ : SL2(R) → SO2(R) is a retraction. So, we have surjection

(r′)∗ : π1(SL2(R), I2) → π1(SO2(R), I2).

The homeomorphism, j : S1 → SO2(R) given by

(cos θ, sin θ) 7→
(

cos θ −sin θ
sin θ cos θ

)

shows that π1(SO2(R), I2) ∼= π1(S
1, e) ∼= Z. Therefore, it follows that π1(SL2(R), I2) is

not trivial. Hence the result follows. 2
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Example 4.3.6 We consider the ring R[X,Y ] and its ideal
〈
X2 +Y 2−1

〉
. There exists

a natural map

SL2(R[X,Y ]) → SL2

(
R[X,Y ]〈

X2 + Y 2 − 1
〉
)
.

We claim that there is no lift of the matrix

(
X Y

−Y X

)
∈ SL2

(
R[X,Y ]〈

X2 + Y 2 − 1
〉
)

to a matrix belonging to SL2(R[X,Y ]). Assume to the contrary we get a lift

τ =

(
f11(X,Y ) f12(X,Y )
f21(X,Y ) f22(X,Y )

)
of

(
X Y

−Y X

)

where τ ∈ SL2(R[X,Y ]). This implies that

1) f11(X,Y ) −X = (X2 + Y 2 − 1)h11(X,Y )

2) f12(X,Y ) − Y = (X2 + Y 2 − 1)h12(X,Y )

3) f21(X,Y ) + Y = (X2 + Y 2 − 1)h21(X,Y )

4) f22(X,Y ) −X = (X2 + Y 2 − 1)h22(X,Y )

where hij(X,Y ) ∈ R[X,Y ]. We define a map r : R2 → SL2(R) given by

(a, b) 7→
(
f11(a, b) f12(a, b)
f21(a, b) f22(a, b)

)
.

Note that, in view of 1,2,3,4, if a2 + b2 = 1, then r(a, b) =

(
a b

−b a

)
. As in 4.3.5, we

get a retraction r′ : SL2(R) → SO2(R) and homeomorphism j : S1 → SO2(R). One can
verify that the composite map α = j−1.r′.r : R2 → S1 is a retraction. This implies that
α∗ : π1(R2) → π1(S

1) is surjective. But, π1(S
1) ∼= Z and π1(R2) is trivial. This is a

contradiction, hence the claim. 2

Example 4.3.7 Let us consider the ring A = R[X,Y ]〈
X2+Y 2−1

〉 and the maximal ideal m =
〈
x− 1, y

〉
of A. Since (x− 1)(x+ 1) = −y2 ∈ m2, it follows that (x− 1) ∈ m2 and hence

m/m2 is generated by one element. We show that m is not principal. This shows that
Question 2 raised in the introduction is not valid in general.

Algebraic Proof. We have an inclusion

A =
R[X,Y ]〈

X2 + Y 2 − 1
〉 →֒ C[X,Y ]〈

X2 + Y 2 − 1
〉 = B

The change of variables X + iY = U and X − iY = V gives an isomorphism

C[X,Y ]〈
X2 + Y 2 − 1

〉 ∼= C[U, V ]〈
UV − 1

〉 .
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We claim that
C[U, V ]〈
UV − 1

〉 ∼= C[U,U−1].

For, we have surjective map

φ :
C[U, V ]

<UV − 1>
→ C[U,U−1]

viz. U 7→ U , V 7→ U−1. We want to define a map in opposite direction. Let S be the

multiplicative closed subset {1, U, U2, . . . } of C[U ]. Clearly, U is unit in C[U,V ]〈
UV−1

〉 . So,

U → U gives a homomorphism

C[U ] → C[U, V ]〈
UV − 1

〉 .

Therefore, there exists a homomorphism

S−1C[U ] = C[U,U−1] → C[U, V ]〈
UV − 1

〉 .

It can be easily shown that the composites are identity, proving the claim.

Since C[U,U−1] is a PID, the image of m in C[X,Y ]〈
X2+Y 2−1

〉 ≃ C[U,U−1] = B is a

principal ideal. We compute the generator. Since X+iY = U , X−iY = U−1, we see that

X = U+U−1

2 , Y = U−U−1

2i . Hence mB = S−1I, where I =
〈
U2−2U+1, U2−1

〉
=
〈
U−1

〉
.

One can easily check that the units of C[U,U−1] are precisely the set {λUn|λ ∈ C∗, n ∈
Z}. Now, we make a general remark. Suppose A →֒ B is an extension of domains and
J ⊂ A is an ideal such that JB =

〈
c
〉
, where c ∈ B. Suppose J = dA, d ∈ A, then there

exists a unit µ ∈ B such that d = µc.

Applying the above remark to the rings A = R[X,Y ]〈
X2+Y 2−1

〉 and B = C[X,Y ]〈
X2+Y 2−1

〉 , we see

that in order to prove that m is not principal it is enough to show that for λ ∈ C∗, and

n ∈ Z the element λUn(U−1) does not belong to the image of R[X,Y ]〈
X2+Y 2−1

〉 in C[X,Y ]〈
X2+Y 2−1

〉 .

Now, complex conjugation σ of C induces a ring isomorphism

σ :
C[X,Y ]〈

X2 + Y 2 − 1
〉 → C[X,Y ]〈

X2 + Y 2 − 1
〉 .

We have σ(g) = g, if and only if g = g+σ(g)
2 belongs to the image of R[X,Y ]〈

X2+Y 2−1
〉 in the

ring C[X,Y ]〈
X2+Y 2−1

〉 . Since σ(X + iY ) = X − iY , σ(U) = U−1.

Thus, if λUn(U − 1) belongs to the image of R[X,Y ]〈
X2+Y 2−1

〉 in C[X,Y ]〈
X2+Y 2−1

〉 , then we get

λUn(U − 1) = λU−n(U−1 − 1). This implies that λU2n+1 = −λ. This is a contradiction.
This proves that m is not principal. 2

Topological Proof. Since x − 1 ∈ m, m(x−1) = A(x−1). Therefore, we have a

surjection f1 : A(x−1) ։ m(x−1), sending e1 to 1. Since (x+1)(x−1) ∈
〈
y
〉
, m(x+1) =

〈
y
〉

and hence we have a surjection f2 : A(x+1) ։ m(x+1), sending e1 to y. These two maps

induce surjections f̂1, f̂2 : A(x+1)(x−1) ։ m(x+1)(x−1) = A(x+1)(x−1).
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Suppose to the contrary that m ⊂ A is principal, generated by g ∈ A. Then y = gh1

and 1 = gh2, where h1 is a unit of A(x+1) and h2 is a unit of A(x−1). Therefore,

y = h1h
−1
2 = h1h3, where h3 is a unit of A(x−1). We write h1 = λ(x,y)

(x+1)n , λ(x, y) ∈ A.

Since h1 is a unit of A(x+1), there exists µ(x, y) ∈ A such that

λ(x, y)

(x + 1)n
µ(x, y)

(x+ 1)m
= 1.

Note that λ(x, y), µ(x, y) define functions from S1 to R and λ(x,y)
(x+1)n , µ(x,y)

(x+1)n define func-

tions from S1 − {(1, 0)} to R. Therefore, λ(a,b)
(a+1)n 6= 0 for all (a, b) ∈ S1 − {(−1, 0)}, i.e.

h1(a, b) 6= 0 for all (a, b) ∈ S1 − {(−1, 0)}.
Since h1 is continuous and S1 − {(1, 0)} is connected, by the Intermediate Value

theorem, it follows that either h1(a, b) > 0 for all (a, b) ∈ S1 − {(−1, 0)} or h1(a, b) < 0
for all (a, b) ∈ S1 − {(−1, 0)}. Similarly, we see that h3 is either positive for all (a, b) ∈
S1 −{(−1, 0)} or negative for all (a, b) ∈ S1 −{(1, 0)}. Therefore, h1h3 is either positive
on S1 − {(−1, 0)} − {(1, 0)} or negative on S1 − {(−1, 0)} − {(1, 0)}. But y > 0 on
the part of S1 − {−1, 0} − {1, 0} which is above the X-axis and y < 0 on the part
of S1 − {(−1, 0)} − {(1, 0)} which is below the X-axis. This contradicts the fact that
h1h3 = y, proving that m is not a principal ideal. 2

We end this section with the following theorem. The proof we give is based on [38].

Theorem 4.3.8 Let A = R[X,Y,Z]〈
X2+Y 2+Z2−1

〉 . Then, since x2 + y2 + z2 = 1, (x, y, z) ∈
Um3(A). There does not exist a matrix in SL3(A) having first row (x, y, z).

To prove the theorem need a few definitions and lemmas.

Definition 4.3.9 A topological space Y is said to be contractible if the identity map
Y → Y is homotopic to a constant map Y → Y , (i.e. the map which sends every element
of Y to a fixed element of Y ).

Example 4.3.10 Let S2 = {(a, b, c) ∈ R3|a2 + b2 + c2 = 1} be the real two sphere. Let
P ∈ S2. Then, S2 − {P} is contractible.

We state some lemmas in generality we need them.

Lemma 4.3.11 The map α : S1 → SL2(R) given by

α(cos θ, sin θ) =

(
cos nθ −sin nθ
sin nθ cos nθ

)

is not homotopic to a constant map.

Proof. Let the notation be as in 4.3.5. Suppose to the contrary that α is homotopic to a

constant map. Then so is the composite map S1 α
// SL2(R)

r′
// SO2(R)

j−1

// S1 .

But, the composite map sends z ∈ S1 to zn. This map is not homotopic to a constant
map. This yields a contradiction, proving the lemma. 2

Lemma 4.3.12 Let α : S1 → SL2(R) and β : S1 → SL2(R) be continuous maps which
are both homotopic to constant maps. Then αβ : S1 → SL2(R) is also homotopic to a
constant map. (Note that αβ make sense as SL2(R) is a group).
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Lemma 4.3.13 Let S1 ⊂ X, where X is a contractible topological space. Suppose α :
S1 → SL2(R) extends to a map λ : X → SL2(R). Then α is homotopic to a constant
map.

Proof of Theorem (4.3.8). Since x2 + y2 + z2 = 1, [z, x, y] ∈ Um3(A). Since (z − 1)
is a unit of Az−1, [z(z − 1), x, y] ∈ Um3(Az−1). Further, since x2 + y2 + z2 = 1, we get

(z(z − 1), x, y)
E3(Az−1)∼ (1 − z, x, y). Therefore,

(z, x, y)
GL3(Az−1)∼ (z(z − 1), x, y)

E3(Az−1)∼ (1 − z, x, y)
E3(Az−1)∼ (1, 0, 0),

as 1 − z is a unit of Az−1. Thus, it follows that the row [z, x, y] is completable in the
ring Az−1. We have a completion given by

σ =




z x
z−1 − y

z−1

x −1 0
y 0 1


 ∈ SL3(Az−1).

Similarly, the row (z, x, y) is completable in the ring Az+1. The matrix

τ =




z − x
z+1 − y

z+1

x 1 0
y 0 1


 ∈ SL3(Az+1)

gives the completion. Since the first column of σ and τ are equal to (z, x, y), the matrix
σ−1τ has first column (1, 0, 0) and

σ−1τ =




1 ∗ ∗
0 η
0




where η ∈ SL2(A(z−1)(z+1)).
Now, we digress a little bit and introduce some notations which will be used in the

rest of the proof. Since σ ∈ SL3(Az−1), we have a map S2 − (1, 0, 0) → SL3(R), sending
(a, b, c) to σ(a, b, c). (We denote the matrix σij(a, b, c) by (σ(a, b, c))).

Now, suppose β ∈ SL3(A) has first column (z, x, y). Then σ−1τ = σ−1ββ−1τ , where

σ−1β =




1 ∗ ∗
0 η1
0


 and β−1τ =




1 ∗ ∗
0 η2
0


 .

Note that η1 ∈ SL3(Az−1) and η2 ∈ SL3(Az+1). Since

σ−1τ =




1 ∗ ∗
0 η
0




it follows that η = η1η2.
Let U = S2 − P , where P = (0, 0, 1) and V = S2 − Q, where Q = (0, 0,−1). Then,

we have functions λ1 : U → SL2(R), sending (a, b, c) to η1(a, b, c), λ2 : V → SL2(R),
sending (a, b, c) to η2(a, b, c) and λ3 : U ∩ V → SL2(R), sending (a, b, c) to η(a, b, c). A
computation shows that

η|z=0 =

(
x2 − y2 −2xy

2xy x2 − y2

)
.
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If we restrict λ3 to the equator S1 we get a map S1 → SL2(R), given by

λ3(cos θ, sin θ, 0) =

(
cos 2θ −sin 2θ
sin 2θ cos 2θ

)
.

By Lemma 4.3.11, it follows that λ3|S1 is not homotopic to constant map. But, since
η = η1η2, it follows that λ3|S1 = λ1|S1 .λ2|S1 . Since λ1 is defined on U , λ2 is defined
on V and U and V are contractible, by Lemma 4.3.13, λ1|S1 and λ2|S1 are homotopic
to constant maps. Therefore, by Lemma 4.3.12, λ3|S1 is homotopic to a constant map.
This is a contradiction. Hence the theorem follows. 2
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