
Lectures on exponential sums
by Stephan Baier, JNU

1. Lecture 1 - Introduction to exponential sums,
Dirichlet divisor problem

The main reference for these lecture notes is [4].

1.1. Exponential sums. Throughout the sequel, we reserve the no-
tation I for an interval (a, b], where a and b are integers, unless stated
otherwise.

Exponential sums are sums of the form∑
n∈I

e(f(n)),

where we write

e(z) := e2πiz,

and f is a real-valued function, defined on the interval I = (a, b]. The
function f is referred to as the amplitude function. Note that the
summands e(f(n)) lie on the unit circle. In applications, f will have
some ”nice” properties such as to be differentiable, possibly several
times, and to satisfy certain bounds on its derivatives. Under suitable
conditions, we can expect cancellations in the sum

∑
n∈I e(f(n)). The

object of the theory of exponential sums is to detect such cancellations,
i.e. to bound the said sum non-trivially. By the triangle inequality, the
trivial bound is ∑

n∈I

e(f(n))� |I|,

where |I| = b− a is the length of the interval I = (a, b].
Exponential sums play a key role in analytic number theory. Often,

error terms can be written in terms of exponential sums. Important
examples for applications of exponential sums are the Dirichlet divisor
problem (estimates for the average order of the divisor function), the
Gauss circle problem (counting lattice points enclosed by a circle) and
the growth of the Riemann zeta function in the critical strip. We will
sketch significant parts of the theory and focus on the Dirichlet divisor
problem as an application.

1.2. The Dirichlet divisor problem. By d(n), we denote the num-
ber of the divisors of the natural number n. We call the function d(n)
”divisor function”. This function is very irregularly distributed. For
example, at the primes p, we have d(p) = 2. On the other hand, if n
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has a lot of prime divisors, then d(n) can be fairly large. Given the
prime factorization

n = pα1
1 · · · pαr

r ,

we have the well-known formula

(1.1) d(n) = (α1 + 1) · · · (αr + 1).

Using this, we shall first prove the following bound for d(n).

Lemma 1. For every given ε > 0, we have

d(n)� nε

as n→∞.

Proof. From (1.1), we deduce that

d(n)

nε
=

r∏
k=1

αk + 1

pεαk
k

.

If pk > exp(1/ε), then

pεαk
k > exp(αk) > 1 + αk.

It follows that
r∏

k=1

αk + 1

pεαk
k

6
r∏

k=1
pk6exp(1/ε)

αk + 1

pεαk
k

.

On the other hand, there exists a constant C depending on ε such that

α + 1

pεαk
6 C

for all α > 1 and primes pk > 1, and the number of primes p 6 exp(1/ε)
is bounded. Hence d(n)/nε is bounded, which implies the result. �

Much more can be said about the average of the divisor function
d(n), i.e. about its summatory function

D(x) =
∑
n6x

d(n).

We will see soon that

D(x) = x log x+ (2γ − 1)x+ ∆(x)

with
∆(x) = O

(
x1/2

)
,

where γ is the Euler constant. Improving the above bound for ∆(x) is
referred to as the Dirichlet divisor problem. Using basic results from
the theory of exponential sums, we will first show that the exponent
1/2 above can be replaced by 1/3 + ε. Then, using more elaborate
tools from this theory, we shall slightly lower this exponent further. It
is conjectured that

∆(x) = O
(
x1/4+ε

)
.
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By a result of Littlewood, the exponent 1/4 above is the limit, i.e. the
above bound becomes false if 1/4 is replaced by any smaller value.

1.3. A basic estimate for D(x). We first want to prove a much
weaker asymptotic estimate, namely the following.

Lemma 2. We have

(1.2) D(x) = x log x+O(x).

Proof. Our starting point is to write

(1.3) D(x) =
∑
s,t
st6x

1 =
∑

16s6x

∑
16t6x/s

1 =
∑

16s6x

[x
s

]
,

where [z] denotes the integral part of z, i.e. the largest integer less or
equal z. We have

z − 1 < [z] 6 z

and hence ∑
16s6x

(x
s
− 1
)
<
∑

16s6x

[x
s

]
6
∑

16s6x

x

s
.

Further, the integral test shows that

(1.4) log x =

x∫
1

1

s
ds 6

∑
16s6x

1

s
6

x∫
1

1

s
ds+ 1 = log x+ 1.

Combining everything, we obtain the desired result. �

1.4. A refined estimate for D(x). From (1.3), we see that D(x)
equals the number of lattice points below the hyperbola h(s) = x/s for
s > 0. To refine the estimate (1.2), we use the symmetry of this region
together with the following refinement of (1.4).

Lemma 3. For y ∈ R, define

ψ(y) := y − [y]− 1/2.

Then we have ∑
s6y

1

s
= log y + γ − ψ(y)

y
+O

(
1

y2

)
.

Proof. See the proof of Lemma 4.4 in [4]. Deferred to the tutorials. �

We are now able to prove the estimate announced in subsection 1.2.

Lemma 4. We have

D(x) = x log x+ (2γ − 1)x+ ∆(x)

with

(1.5) ∆(x) = O
(
x1/2

)
.
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Proof. By symmetry, we have

D(x) =
∑
s,t
st6x

1 =
∑

16s6
√
x

∑
16t6x/s

1 +
∑

16t6
√
x

∑
16s6x/t

1−
∑

16s6
√
x

∑
16t6

√
x

1

=2
∑

16s6
√
x

[x
s

]
− [
√
x]2.

Writing [y] = y − ψ(y)− 1/2, it follows that

D(x) = 2
∑

16s6
√
x

(
x

s
− ψ

(x
s

)
− 1

2

)
−
(√

x− ψ(
√
x)− 1

2

)2

.

Expanding the terms on the right-hand side and using Lemma 3 leads
to the estimate

(1.6) D(x) = x log x+ (2γ − 1)x+O

1 +
∑

16s6
√
x

ψ
(x
s

)
after a short calculation. Estimating the O-term trivially yields the
desired result. �

1.5. Relation to exponential sums. A refinement of the estimate
(1.5) for the error term in the Dirichlet divisor problem hinges upon
a non-trivial estimate of the O-term in (1.6). Note that the sawtooth
function ψ(y) is periodic and 0 on average. Therefore, we may expect
considerable cancellations in the sum∑

16s6
√
x

ψ
(x
s

)
.

In fact, many error terms occuring in analytic number theory can be
related to sums of the form ∑

n∈I

ψ (g(n)) ,

where I is an interval and g is a ”nice” function, i.e. differentiable
sufficiently often and/or satisfying other good properties. We now want
to relate such sums to exponential sums. The most naive approach to
do this is to expand the periodic function ψ(y) into a Fourier series. It
turns out that

ψ(y) =
1

2πi
·
∑
k∈Z
k 6=0

e(ky)

k
if y 6∈ Z.

To make this idea useful, we need to cut the summation and estimate
the error term. Indeed, it can be shown that

ψ(y) =
1

2πi
·
∑
|k|6N
k 6=0

e(ky)

k
+O

(
1

N ||y||

)
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for all N > 1, where ||y|| is the distance of y to the nearest integer.
Now, re-arranging summations, it follows that
(1.7)∑

n∈I

ψ (g(n)) =
1

2πi
·
∑
|k|6N
k 6=0

1

k
·
∑
n∈I

e(kg(n)) +O

(
1

N
·
∑
n∈I

1

||g(n)||

)
.

Note that the inner sums ∑
n∈I

e(kg(n))

are exponential sums. However, we also need to deal with the O-
term which makes it necessary to control the number of n’s for which
g(n) is very close to an integer. To avoid this difficulty, we now state
the following remarkable result by Vaaler which allows to approximate
the sawtooth function nicely by trigonometric polynomials, which are
expressions of the form

p(x) =
∑
|m|6M

ame(mx).

Theorem 5 (Vaaler). Let M ∈ N. Then there exists a trigonometrical
polynomial

ψ∗(x) :=
∑

16|m|6M

aM(m)e(mx)

such that

aM(m)� 1

m

and

|ψ∗(x)− ψ(x)| 6
∑
|m|6M

bM(m)e(mx),

where

bM(m) :=
1

2M + 2
·
(

1− |m|
M + 1

)
.

Proof. See the appendix in [4]. Deferred to the tutorials. �

We note that the right-hand side of (5) is non-negative and that

(1.8) bM(m)� 1

M
� 1

m
.
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Now using the triangle inequality and Theorem 5 gives∣∣∣∣∣∑
n∈I

ψ(g(n))

∣∣∣∣∣ 6
∣∣∣∣∣∑
n∈I

ψ∗(g(n))

∣∣∣∣∣+

∣∣∣∣∣∑
n∈I

ψ(g(n))−
∑
n∈I

ψ∗(g(n))

∣∣∣∣∣
6

∣∣∣∣∣∣
∑
n∈I

∑
16|m|6M

aM(m)e(mg(n))

∣∣∣∣∣∣+
∑
n∈I

∑
|m|6M

bM(m)e(mg(n))

6
∑

16|m|6M

(|aM(m)|+ bM(m)) ·

∣∣∣∣∣∑
n∈I

e(mg(n))

∣∣∣∣∣+ bM(0)|I|

�|I|
M

+
∑

16m6M

1

m
·

∣∣∣∣∣∑
n∈I

e(mg(n))

∣∣∣∣∣ .
We summarize the above in the following result which should be com-
pared to (1.7).

Lemma 6. Let M ∈ N and g : I → R a function. Then∣∣∣∣∣∑
n∈I

ψ(g(n))

∣∣∣∣∣� |I|M +
∑

16m6M

1

m
·

∣∣∣∣∣∑
n∈I

e(mg(n))

∣∣∣∣∣ .
2. Lecture 2 - Van der Corput’s bound and its application

to the Dirichlet divisor problem

In this lecture, we prove the following basic but powerful bound for
exponential sums due to van der Corput.

Theorem 7. Suppose f is a real valued function with two continuous
derivatives on the interval I of length |I| > 1. Suppose also that there
are some λ > 0 and α > 1 such that

λ 6 |f ′′(x)| 6 αλ

on I. Then

(2.1)
∑
n∈I

e(f(n))� α|I|λ1/2 + λ−1/2.

Before proving this result, we apply it to the Dirichlet divisor problem
and prove the following result.

Lemma 8. We have

D(x) = x log x+ (2γ − 1)x+ ∆(x)

with

(2.2) ∆(x) = O
(
x1/3 log x

)
.
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Proof. We recall that we have to bound the sum
∑

16s6
√
x

ψ(x/s). First,

we split the summation range into dyadic intervals, getting

(2.3)
∑

16s6
√
x

ψ
(x
s

)
=

[log2
√
x]∑

k=0

∑
√
x/2k+1<s6

√
x/2k

ψ
(x
s

)
.

Now it remains to estimate the sum
∑

y<s62y
ψ(x/s) for 1/2 6 y 6 x1/2.

We shall show that

(2.4)
∑

y<s62y

ψ
(x
s

)
6 x1/3

under this condition. This is trivial if y 6 x1/3. So we will assume that
x1/3 < y 6 x1/2 in the following. By Lemma 6, we have∑

y/2<s6y

ψ
(x
s

)
�

∑
16m6M

1

m
·

∣∣∣∣∣∣
∑

y/2<n6y

e
(
m · x

n

)∣∣∣∣∣∣+
y

M
.

Using Theorem 7, it follows that∑
y/2<s6y

ψ
(x
s

)
�

∑
16m6M

1

m
·

(
y ·
(
m · x

y3

)1/2

+

(
m · x

y3

)−1/2)
+

y

M

�M1/2x1/2y−1/2 + y3/2x−1/2 + yM−1.

Balancing the first and the last terms by choosing M := [yx−1/3] gives∑
y<s62y

ψ
(x
s

)
6 x1/3 + y3/2x−1/2

which implies (2.4) if x1/3 < y 6 x1/2. From (2.3) and (2.4), we deduce
that ∑

16s6
√
x

ψ
(x
s

)
� x1/3 log x,

which together with (1.6) implies the claim. �

The proof of Theorem 7 relies on the Kusmin-Landau bound (Lemma
10 below), which in turn is a generalization of the following simple
bound for geometric sums.

Lemma 9. For any interval I and x ∈ R, we have∑
n∈I

e(nx)� 1

||x||
.

Proof. Assume without loss of generality that I = (a, b], where a, b ∈ Z.
Then∑

a<n6b

e(nx) = e(x) · e(bx)− e(ax)

e(x)− 1
� 1

|e(x)− 1|
=

1

|e(||x||)− 1|
.
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Applying Taylor approximation, we have

e(||x||)− 1� ||x||.
This implies the claim. �

More generally, the following holds.

Lemma 10 (Kusmin-Landau). Assume f is continuously differen-
tiable, f ′ is monotonic and ||f ′(x)|| > δ > 0 on the interval I. Then∑

n∈I

e(f(n))� δ−1.

Proof. See the proof of Theorem 2.1. in [4]. Deferred to the tutorials.
�

Based on this bound, we now prove Theorem 7.

Proof. Since |f ′′| > λ on I, it follows that f ′′ is positive or negative on
I. In the following, we assume that f ′′ is positive. The other case that
f ′′ is negative is similar.

Since f ′′ is positive on I, it follows that f ′ is monotonically increas-
ing on this interval and hence f ′ is invertible on (a, b] and f ′((a, b]) =
(f ′(a), f ′(b)]. Let 0 < δ 6 1/2 be a parameter, to be fixed later. We
divide the summation interval (a, b] = (f ′)−1(f ′(a), f ′(b)] into subinter-
vals

Ak := (f ′)−1((k − δ, k + δ] ∩ (f ′(a), f ′(b)])

and
Bk := (f ′)−1((k + δ, k + 1− δ] ∩ (f ′(a), f ′(b)]),

where k is an integer. For every k, the exponential sum, restricted to
the summation interval Ak, will be estimated trivially, and the expo-
nential sum, restricted to the summation interval Bk, will be estimated
using Lemma 10. Hence, if K := supk∈Z |Ak| and N is the number of
integers k for which the interval Ak or the interval Bk is non-empty,
then ∑

n∈I

e(f(n))�
(
1 +K + δ−1

)
N.

We now want to estimate the quantities K and N in terms of the
parameters α and λ in the lemma. We have

N 6 f ′(b)− f ′(a) + 1 6 (b− a)αλ+ 1,

where the last inequality follows from the mean value theorem. The
mean value theorem also implies that

K 6
2δ

λ
.

It follows that

(2.5)
∑
n∈I

e(f(n))�
(

1 +
δ

λ
+ δ−1

)
(|I|αλ+ 1).



9

If λ > 1/4, then the claimed bound (2.1) is trivial. Otherwise, we
choose

δ := λ1/2

in which case (2.1) follows from (2.5). �

3. Lecture 3 - Weyl differencing (A process)

In the following lectures, we introduce two processes which transform
a given exponential sums into new ones. This allows for improvements
over the von der Corput bound. In particular, we will see that the
exponent 1/3 in the O-term in (1.5) can be lowered. We note that the
van der Corput bound (2.1) is non-trivial if

|I|−2 � λ�α 1.

(In applications, α usually just plays the role of a constant.) So in
particular, if f ′′ is much larger than 1 on I, then we can so far not
do better than estimating the exponential sum trivially. The Weyl
differencing (or A process), which we disucss in this section, allows to
lower the size of the second derivative of the amplitude function. Our
starting point is the following general estimate which is in fact an easy
consequence of the Cauchy-Schwarz inequality.

Lemma 11. Suppose ξ(n) is a complex-valued function such that ξ(n) =
0 if n 6∈ I. Then, if H is a positive integer, we have

(3.1)

∣∣∣∣∣∑
n

ξ(n)

∣∣∣∣∣
2

6
|I|+H

H
·
∑
|h|6H

(
1− |h|

H

)
·
∑
n

ξ(n)ξ(n+ h).

Proof. We write

H
∑
n

ξ(n) =
H∑
k=1

∑
n

ξ(n+ k) =
∑
n

H∑
k=1

ξ(n+ k).

Using the Cauchy-Schwarz inequality, we deduce that

H2 ·

∣∣∣∣∣∑
n

ξ(n)

∣∣∣∣∣
2

6

 ∑
n∈Z

n+k∈I for some k∈{1,...,H}

1

 ·
∑

n

∣∣∣∣∣
H∑
k=1

ξ(n+ k)

∣∣∣∣∣
2


6(|I|+H) ·
∑
n

H∑
k=1

H∑
l=1

ξ(n+ k)ξ(n+ l).

(3.2)
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Making the change of variables m = n+ k and h = l − k, we obtain

∑
n

H∑
k=1

H∑
l=1

ξ(n+ k)ξ(n+ l) =
∑
|h|<H

∑
m

ξ(m)
∑

16k,l6H
h=l−k

ξ(m+ h)

=
∑
|h|<H

∑
m

ξ(m)ξ(m+ h) · (H − |h|).

(3.3)

Combining (3.2) and (3.3), and dividing by H2 gives (3.1). �

Now we apply the above general estimate to the situation when
ξ(n) = e(f(n)) for n ∈ I and H 6 |I|.

Theorem 12 (Weyl differencing or A process). Let f : I → R be a
function and H 6 |I| an integer. Then∣∣∣∣∣∑

n∈I

e(f(n))

∣∣∣∣∣
2

6
2|I|2

H
+

2|I|
H
·
∑

16|h|6H

∣∣∣∣∣∑
n∈Ih

e(Fh(n))

∣∣∣∣∣ ,
where

Ih := (max{a, a− h},min{b, b− h})
and

Fh(x) = f(x+ h)− f(x).

Proof. Setting

ξ(n) :=

{
e(f(n)) if n ∈ I
0 otherwise,

and using H 6 |I|, we deduce the inequality∣∣∣∣∣∑
n∈I

e(f(n))

∣∣∣∣∣
2

6
2|I|
H
·
∑
|h|6H

∣∣∣∣∣∑
n∈Ih

e(Fh(n))

∣∣∣∣∣
from Lemma 11. Now the claim follows by noting that the contribution
of h = 0 equals 2|I|2/H since e(F0(n)) = 1. �

The trivial estimate is∣∣∣∣∣∑
n∈I

e(f(n))

∣∣∣∣∣
2

6 |I|2,

so the contribution 2|I|2/H of h = 0 is roughly by a factor of H smaller
than the trivial estimate, and hence we get a saving over the trivial
estimate altogether if H is not too small and

∑
n∈Ih

e(Fh(n)) is much

smaller than |I| for every h with 1 6 |h| 6 H. We note that the k-th
derivative

F
(k)
h (x) = f (k)(x+ h)− f (k)(x)
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of Fh(x) is, generically, much smaller than that of the original am-
plitude function f(x), provided |h| is not too large. So if the van der
Corput bound fails for the original exponential sum because the second
derivative of f(x) is too large, we still have a chance that it works for
Fh(x). This is why the Weyl differencing is useful. We can even iter-
ate the Weyl process to bring the derivatives of the amplitude function
into a reasonable range. In the following, we will make the above ar-
guments precise. We shall prove the following theorem by combinating
Weyl differencing and the van der Corput bound.

Theorem 13. Assume f : I → R is three times continuously differen-
tiable and

(3.4) λ 6 |f ′′′(x)| 6 αλ

for some λ > 0 and α > 1 with

(3.5) α2λ > |I|−3

and all x ∈ I. Then

(3.6)
∑
n∈I

e(f(n))� α1/3|I|λ1/6 + α1/6|I|1/2λ−1/6.

Proof. Our starting point is the identity

F ′′h (x) = f ′′(x+ h)− f ′′(x) =

h∫
0

f
′′′

(x+ y) dy

following from the fundamental theorem of calculus. Since f ′′′ is con-
tinuous on I, we deduce that

|h|λ 6 |F ′′h (x)| 6 |h|αλ if h 6= 0

from (3.4). Therefore, by Theorem 7,∑
n∈I(h)

e(Fh(n))� α|I|(λ|h|)1/2 + (λ|h|)−1/2.

Hence, if H 6 |I| is an integer, Theorem 12 gives the bound∣∣∣∣∣∑
n∈I

e(f(n))

∣∣∣∣∣
2

�|I|
2

H
+
|I|
H
·
(
α|I|λ1/2H3/2 + λ−1/2H1/2

)
�α|I|2λ1/2H1/2 + |I|λ−1/2H−1/2 + |I|2H−1.

(3.7)

If α2λ > 1, then the above bound is trivial. Otherwise, we set

H := [α−2/3λ−1/3],

balancing the first and the third terms in the last line of (3.7). We note
that H 6 |I| by the condition (3.5). Thus we get∣∣∣∣∣∑

n∈I

e(f(n))

∣∣∣∣∣
2

� α2/3|I|2λ1/3 + α1/3|I|λ−1/3
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which implies the claim after taking the square root. �

We note that (3.6) is non-trivial if

|I|−3 �α λ�α 1.

As mentioned already, the Weyl differencing can be iterated. To
do this, Theorem 12 is applied again to the new exponential sums∑
n∈Ih

e(Fh(n)) and then again to the resulting new exponential sums,

and so on. We state without proof the following general result without
a condition like (3.5) on α and λ which is obtained by iterating the Weyl
differencing q times and then applying the van der Corput bound.

Theorem 14. Let q be a positive integer. Suppose that f is a real
valued function with q + 2 continuous derivatives on I. Suppose also
that for some λ > 0 and for some α > 1,

λ 6 |f (q+2)(x)| 6 αλ

on I. Let Q := 2q. Then∑
n∈I

e(f(n))� |I|
(
α2λ

)1/(4Q−2)
+|I|1−1/(2Q)α1/(2Q)+|I|1−2/Q+1/Q2

λ−1/(2Q).

Proof. This is Theorem 2.8. in [4]. �

4. Lecture 4 - B process, part 1: Poisson summation and
bounds for exponential integrals

We have now seen how to change the sizes of the derivatives of the
amplitude function. In this so-called A process (or Weyl differencing),
the lengths of the summation intervals remained essentially unchanged
(the length of Ih is |I| − |h|, which is, generically, of the same order
of magnitude as |I|). Next, we introduce a new process which allows,
under favourable circumstances, to transform exponential sums into
shorter ones. This is called B process. The main ideas are to use the
Poisson summation formula and then to evaluate the resulting Fourier
integrals asymptotically.

4.1. Poisson summation formula. The famous Poisson summation
formula states that under certain conditions, a series of the form

∑
n

g(n)

equals its dual series
∑
n

ĝ(n), where ĝ is the Fourier transform of the

complex-valued function g, defined on the reals. We recall that the
Fourier transform is defined as

ĝ(x) =

∞∫
−∞

g(t)e(−tx) dx.

In the following, we state a theorem which gives precise conditions on
g under which the Poisson summation formula holds. We don’t look
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into its proof. There are many such theorems with different conditions
on g in the literature.

Theorem 15. Let g(x) be a complex-valued function on the reals that
is piecewise continuous with only finitely many discontinuities and for
all real numbers a satisfies

g(a) =
1

2
·
(

lim
x→a−

g(x) + lim
x→a+

g(x)

)
.

Moreover, assume that g(x)� (1+ |x|)−c for some constant c > 1 with
an absolute implied constant. Then

∞∑
n=−∞

g(n) =
∞∑

n=−∞

ĝ(n).

Proof. See [1], for example. �

In particular, by setting

g(x) :=


e(f(x)) if a < x < b

e(f(x))/2 if x = a, b

0 otherwise,

we obtain immediately the following result.

Corollary 1. Let a < b be integers and f : [a, b] → R continuous.
Then

(4.1)
∑
a<n6b

e(f(n)) =
e(f(b))− e(f(a))

2
+

∞∑
n=−∞

b∫
a

e(f(x)− nx) dx.

This can be made useful if we are able to cut the summation on the
right-hand side of (4.1). Indeed, it turns out that if f is “nice” (we later
make this precise), then the Fourier integral

b∫
a

e(f(x)− nx) dx

gives a substantial contribution only if the first derivative of the ampli-
tude function f(x)− nx has a root in the interval [a, b], i.e., f ′(x) = n
has a solution in [a, b]. So, essentially, only n’s in the interval

f ′(a) 6 n 6 f ′(b)

matter, provided f ′ is monotonic. Indeed, the following lemma holds.

Lemma 16. Suppose f is a real valued function which has two continu-
ous derivatives on the interval [a, b]. Suppose also that f ′ is monotonic
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in [a, b], that H1 and H2 are integers such that H1 < f ′(x) < H2 for
a 6 x 6 b and that H = H2 −H1 > 2. Then

∑
a<n6b

e(f(n)) =
∑

H16h6H2

b∫
a

e(f(x)− hx) dx+O (logH) .

Proof. See the proof of Lemma 3.5. in [4]. Deferred to the tutorials. �

4.2. Bounds for exponential integrals. Lemma 16 is the starting
point of the B process. It will now be important to have good estimates

or even asymptotic evaluations of the integrals
∫ b
a
e(f(x)− hx) dx. In

this lecture, we provide two bounds for general exponential integrals∫ b
a
e(g(x)) dx. We first prove the following.

Lemma 17. Assume f is twice differentiable on [a, b], f ′ is monotonic
on [a, b] and |f ′(x)| > λ1 > 0 for all x ∈ [a, b]. Then

b∫
a

e(f(x)) dx� 1

λ1
.

Proof. Integration by parts yields

b∫
a

e(f(x)) dx =
1

2πi
·

b∫
a

(2πif ′(x)) · e(f(x))

f ′(x)
dx

=
e(f(b))

2πif ′(b)
− e(f(a)

2πif ′(a)
− 1

2πi
·

b∫
a

e(f(x))
d

dx

1

f ′(x)
dx

�1

λ
+

b∫
a

∣∣∣∣ ddx 1

f ′(x)

∣∣∣∣ dx.

(4.2)

But 1/f ′(x) is monotonic on [a, b] since f ′(x) is, and hence

d

dx

1

f ′(x)

doesn’t change sign on [a, b], and therefore

b∫
a

∣∣∣∣ ddx 1

f ′(x)

∣∣∣∣ dx =

∣∣∣∣∣∣
b∫

a

d

dx

1

f ′(x)
dx

∣∣∣∣∣∣ =

∣∣∣∣ 1

f ′(b)
− 1

f ′(a)

∣∣∣∣� 1

λ
.

�

Lemma 17 reflects the fact that if e(f(x)) oscillates quickly, then
the integral is small. Next, we give a bound in terms of the second
derivative of f .
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Lemma 18. Assume f is twice continuously differentiable on [a, b] and
|f ′′(x)| > λ2 for all x ∈ [a, b]. Then

b∫
a

e(f(x)) dx� 1

λ
1/2
2

.

Proof. Let δ > 0, to be fixed later. Define

E1 := {x ∈ [a, b] : |f ′(x)| < δ}

and

E2 := [a, b] \ E1 = {x ∈ [a, b] : |f ′(x)| > δ}.
By our conditions of f , E1 is an interval or empty, and E2 is the union
of at most 2 intervals. We shall estimate the integral on E1 trivially
and the integral on E2 using Lemma 17. This gives∫

E1

e(f(x)) dx� |E1| and

∫
E2

e(f(x)) dx� 1

δ
.

It remains to bound |E1| and choose δ. If E1 = [c, d], then, by mean
value theorem,

f ′(d)− f ′(c)
d− c

= f ′′(x)

for some x ∈ E1 and so ∣∣∣∣f ′(d)− f ′(c)
d− c

∣∣∣∣ > λ2.

It follows that

2δ

λ2
>

∣∣∣∣f ′(d)− f ′(c)
λ2

∣∣∣∣ > d− c = |E1|.

Combining everything, we obtain the bound

b∫
a

e(f(x)) dx� 1

δ
+

δ

λ2
.

Now choosing δ := λ
1/2
2 , we obtain the desired result. �

The above two lemmas can be viewed as the continuous counter-
parts of the Kusmin-Landau and van der Corput bounds (Lemma 10
and Theorem 7) for (discrete) exponential sums. Also the proofs of
Lemma 18 and Theorem 7 have some similarities. In both proofs, the
interval [a, b] is divided into subintervals on which we either use a trivial
estimate or the basic estimates provided by the Kusmin-Landau bound
or Lemma 17, respectively.
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5. Lecture 5 - B process, part 2: Stationary phase and
transformation of exponential sums into new

exponential sums

5.1. Stationary phase. To make further progress, we need to eval-

uate the exponential integrals
b∫
a

e(f(x) − hx) dx asymptotically. We

recall that these integrals yield a significant contribution only if the
derivative of the amplitude function f(x)− hx has a root in [a, b]. We
now want to look into the situation when g(x) is twice continuously
differentiable and g′(x) is monotonic and has a root x0 in [a, b]. We
want to assume that g′(x) is monotonically increasing in [a, b] which im-
plies that g′′(x) is positive. The other case that g′(x) is monotonically

decreasing is similar. We investigate the integral
b∫
a

e(g(x)) dx under

these conditions. It shall turn out that only a small neighbourhood
of x0 gives a significant contribution to this integral. In this neigh-
bourhood, the second derivative is close to g′′(x0). Therefore, taking
Lemma 18 into account, we may expect that

b∫
a

e(g(x)) dx� 1√
g′′(x0)

.

But we will do better than this, namely we will show that
b∫
a

e(g(x)) dx

is close to e(1/8 + g(x0))/
√
g′′(x0). The relevant asymptotic estimate

is referred to as stationary phase. We shall give a detailed proof of
this estimate for the simplest case when g(x) = Ax2 with A > 0 and
x0 = 0. It is easy to extend this result to arbitrary quadratic functions
g(x). Finally, we shall give heuristic arguments for a generalization of
this result to arbitrary functions g(x) satisfying the above and a few
additional conditions. We shall not prove this generalization in detail.

For g(x) = Ax2 with A > 0 and [a, b] = [−X, Y ] with X, Y > 0, we
prove the following.

Lemma 19. Let A, X and Y be positive numbers. Then

Y∫
−X

e
(
Ax2

)
dx =

e(1/8)√
2A

+O

(
1

AX
+

1

AY

)
.
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Proof. We have

Y∫
−X

e
(
Ax2

)
dx =

0∫
−X

e
(
Ax2

)
dx+

Y∫
0

e
(
Ax2

)
dx

=

X∫
0

e
(
Ax2

)
dx+

Y∫
0

e
(
Ax2

)
dx.

Therefore, it suffices to prove that

Z∫
0

e
(
Ax2

)
dx =

e(1/8)

2
√

2A
+O

(
1

AZ

)
if Z > 0. By a linear change of variables, we see that

Z∫
0

e
(
Ax2

)
dx =

1√
A
·

√
AZ∫

0

e
(
y2
)
dy.

Hence, all we need to prove is that

(5.1)

W∫
0

e
(
y2
)
dy =

e(1/8)

2
√

2
+O

(
1

W

)
if W > 0.

At this point, we use complex analysis. By Cauchy’s theorem, we
have

(5.2)

W∫
0

e
(
y2
)
dy =

∫
C1

e
(
y2
)
dy +

∫
C2

e
(
y2
)
dy,

where C1 is the line seqment with initial point 0 and terminal point
e(1/8)W , and C2 is the circle segment with initial point e(1/8)W and
terminal point W and radius W . We may parametrize C1 and the
inverse −C2 of C2 as

C1 : [0, 1]→ C such that C1(t) := e

(
1

8

)
· tW

and

−C2 : [0, 1/8]→ C such that − C2(θ) := e (θ) ·W.
So therefore,

(5.3)

∫
C1

e
(
y2
)
dy =

1∫
0

e

(
1

8

)
·W · e

(
it2W 2

)
dt



18

and

(5.4)

∫
C2

e
(
y2
)
dy = −

1/8∫
0

2πi · e (θ) ·W · e
(
e(2θ)W 2

)
dθ.

The integral on the right-hand side of (5.3) turns into

1∫
0

e

(
1

8

)
·W · e

(
it2W 2

)
dt =e

(
1

8

)
·

1∫
0

W · e−2πt2W 2

dt

=e

(
1

8

)
·
W∫
0

e−2πz
2

dz

after a linear change of variables. Further, a change x = 2πz2 of
variables gives

e

(
1

8

)
·
W∫
0

e−2πz
2

dz =e

(
1

8

)
·

2πW 2∫
0

1

2
√

2π
· x−1/2e−x dx

=
e (1/8)

2
√

2π
·

 ∞∫
0

x−1/2e−x dx−
∞∫

2πW 2

x−1/2e−x dx

 .

We remember that

∞∫
0

x−1/2e−x = Γ

(
1

2

)
=
√
π

and estimate the second integral by

∞∫
2πW 2

x−1/2e−x dx 6

∞∫
0

(2πW 2)−1/2e−x dx� 1

W
.

So altogether, we obtain the asymptotic estimate

(5.5)

∫
C1

e
(
y2
)
dy =

e(1/8)

2
√

2
+O

(
1

W

)

for the integral on C1.
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For the integral on the right-hand side of (5.4), we see that

−
1/8∫
0

2πi · e (θ) ·W · e
(
e(2θ)W 2

)
dθ

=− 2πiW

1/8∫
0

e (θ) · e2πi(cos(4πθ)+i sin(4πθ))W 2

dθ

=− 2πiW

1/8∫
0

e (θ) · e2πi cos(4πθ)W 2 · e−2π sin(4πθ)W 2

dθ

�W
1/8∫
0

e−2π sin(4πθ)W 2

dθ

6W

1/8∫
0

e−4π
2θW 2

dθ

=
W

4π2W 2
·
(

1− e−π2W 2/2
)
dθ

� 1

W

and hence

(5.6)

∫
C2

e
(
y2
)
dy = O

(
1

W

)
.

Combining (5.2), (5.5) and (5.6), we obtain (5.1). �

From the above lemma, we deduce the following more general result
by a change of variables.

Corollary 2. Let a, b, x0 be real numbers such that a < x0 < b and
A > 0 and B be real numbers. Then

b∫
a

e
(
B + A(x− x0)2

)
dx =

e(1/8 +B)√
2A

+O

(
1

A(x0 − a)
+

1

A(b− x0)

)
.

This fails to be an asymptotic estimate if x0 is very close to one of
the endpoints a or b of the interval [a, b]. However, thanks to Lemma
18, we know that

b∫
a

e
(
B + A(x− x0)2

)
dx = O

(
1√
A

)
,



20

and hence we deduce the following improved version from Corollary 2
with an error term of the same size as the main term if x0 is very close
to a or b (i.e., in this situation, we just have the above upper bound).

Corollary 3. Let a, b, x0 be real numbers such that a < x0 < b and
A > 0 and B be real numbers. Then

b∫
a

e
(
B + A(x− x0)2

)
dx

=
e(1/8 +B)√

2A
+O

(
min

(
1

A(x0 − a)
,

1√
A

)
+ min

(
1

A(b− x0)
,

1√
A

))
.

Now we want to extend this result to general amplitude functions
g(x). We give a heuristic argument before stating the precise result.
Assume that g(x) is twice continuously differentiable in [a, b] and g′(x)
is monotonically increasing in [a, b] (which implies that g′′(x) is positive
in [a, b]). Assume that g′(x0) = 0 for some x0 ∈ [a, b]. Then the second
order Taylor approximation of g(x) at x0 takes the form

g(x) = g(x0) +
1

2
· g′′(x0) · (x− x0)2 + error term.

So taking Corollary 3 into account, we may expect to get a result of
the shape

b∫
a

e(g(x)) dx =
e(1/8 + g(x0))

g′′(x0)1/2

+O
(

min

{
1

g′′(x0)(x0 − a)
,

1

g′′(x0)1/2

}
+ min

{
1

g′′(x0)(b− x0)
,

1

g′′(x0)1/2

}
+ further error terms.

)
The precise result is stated below. Its proof is based on the above idea
but very technical and therefore we omit it here. Some conditions on
the third and fourth derivatives of g(x) are required in addition.

Theorem 20 (Stationary Phase). Suppose g is a real valued function
with four continuous derivatives on [a, b]. Suppose also that g′′(x) >
λ2 > 0 on [a, b] and g′(x0) = 0 for some x0 ∈ [a, b]. Finally, assume
that

|g(3)(x)| 6 λ3 and |g(4)(x)| 6 λ4

on [a, b]. Then

b∫
a

e(g(x)) dx =
e(1/8 + g(x0))

g′′(x0)1/2
+O (R1 +R2) ,
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where

R1 := min

(
1

λ2(x0 − a)
,

1

λ
1/2
2

)
+ min

(
1

λ2(b− x0)
,

1

λ
1/2
2

)
and

R2 = (b− a)λ4λ
−2
2 + (b− a)λ23λ

−3
2 .

Proof. This is Lemma 3.6. in [4]. �

5.2. Transformation of exponential sums into new exponential
sums. Now we are ready to formulate the B process.

Theorem 21 (B process). Suppose that f has four continuous deriva-
tives on [a, b], and that f ′′(x) > 0 on this interval. Suppose further that
[a, b] ⊆ [N, 2N ] and that α = f ′(a) and β = f ′(b). Assume that there
is some F > 0 such that

f ′′(x) � FN−2, f (3)(x)� FN−3, f (4)(x)� FN−4

on [a, b]. Let xh be defined by the relation f ′(xh) = h, and let φ(h) =
f(xh)− hxh. Then
(5.7)∑
a<n6b

e(f(n)) =
∑
α6h6β

e(1/8 + φ(h))

f ′′(xh)1/2
+O

(
log(FN−1 + 2) + F−1/2N

)
.

Proof. We just sketch how it works. The details are left to the reader
as an exercise. First, by Lemma 16, we have

∑
a<n6b

e(f(n)) =
∑

[α]−16h6[β]+1

b∫
a

e(f(x)− hx) dx+O (log(2 + β − α))

with α := f ′(a) and β := f ′(b). Now, if h ∈ [α, β], then there is a
unique solution xh of the equation (f(x) − hx)′ = 0 (or f ′(x) = h) in
[a, b]. In this situation, we use Theorem 20 to approximate the integral

b∫
a

e(f(x)− hx)

by
e(1/8 + f(xh)− hxh)

f ′′(xh)1/2
.

Otherwise, h = [α]− 1, [α] or [β] + 1, in which situation we bound the

said integral using Lemma 18 by 1/λ
1/2
2 . Doing this, we end up with

an expression of the form∑
a<n6b

e(f(n)) =
∑
α6h6β

e(1/8 + f(xh)− hxh)
f ′′(xh)1/2

+ sum of error terms.
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It remains to bound the sum of error terms which can be easily done
under the conditions in this Theorem. �

We note that the factor 1/f ′′(xh)
1/2 on the right-hand side of (5.7)

can be removed using partial summation. In this way, one obtains the
bound

(5.8)
∑
α6h6β

e(1/8 + φ(h))

f ′′(xh)1/2
� N

F 1/2
· sup
α6x6β

∣∣∣∣∣ ∑
α6h6x

e(φ(h))

∣∣∣∣∣ .
Thus, we have successfully transformed exponential sums into new
ones. Similarly to Theorem 21, one can prove the following for the
case when f ′′(x) < 0 on [a, b].

Theorem 22 (B process, variant). Suppose that f has four continuous
derivatives on [a, b], and that f ′′(x) < 0 on this interval. Suppose
further that [a, b] ⊆ [N, 2N ] and that α = f ′(b) and β = f ′(a). Assume
that there is some F > 0 such that

f ′′(x) � FN−2, f (3)(x)� FN−3, f (4)(x)� FN−4

on [a, b]. Let xh be defined by the relation f ′(xh) = h, and let φ(h) =
f(xh)− hxh. Then
(5.9)∑
a<n6b

e(f(n)) =
∑
α6h6β

e(−1/8 + φ(h))

|f ′′(xh)|1/2
+O

(
log(FN−1 + 2) + F−1/2N

)
.

Similarly to (5.8), we have

(5.10)
∑
α6h6β

e(−1/8 + φ(h))

|f ′′(xh)|1/2
� N

F 1/2
· sup
α6x6β

∣∣∣∣∣ ∑
α6h6x

e(φ(h))

∣∣∣∣∣ .
It is advantageous to turn from the exponential sum

∑
a<n6b

e(f(n)) to

the new exponential sums
∑

α<h6x
e(φ(h)) if the summation range gets

shorter. In the generic case, we have b− a � N and x− α � β − α �
FN−1. Thus as a rule of thumb, the B process is advantageous if
F 6 N2 (unless b− a is small compared to N).

6. Lecture 6 - Exponent pairs and applications

6.1. Exponent pairs. Now we want to combine the A andB processes
developed in the previous lectures to obtain improved estimates for
exponential sums. A very general framework for this is the theory of
exponent pairs. We describe it heuristically without going into the
highly technical details, which can be found in the relevant literature
(e.g. [4]).
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Assume in the following that I = (a, b] ⊆ (N, 2N ] and f is a function
on [a, b] which satisfies the conditions in Theorems 21 or 22. These
conditions are satisfied in most applications. Assume, in addition, that

f ′(x) � FN−1 =: L

on I, which is also the case in most applications. Prototypes are the
functions f(x) = yxs with y 6= 0 and s 6∈ {0, 1, 2}. Let us re-inspect
van der Corput’s bound, Theorem 7. Under the conditions above, we
have

∑
n∈I

e(f(n))�N ·
(
F

N2

)1/2

+

(
F

N2

)−1/2
=F 1/2 +

N

F 1/2
= L1/2N1/2 + L−1/2N1/2 � L1/2N1/2

(6.1)

if L > 1. Note the exponent pair (1/2, 1/2) above. By a sequence of
A and B processes, it is possible to produce new exponent pairs (k, l),
i.e. estimates of the form∑

n∈I

e(f(n))� LkN l,

as we will indicate below. The conditions on f are highly technical,
though, so we will not state them here. Prototypes are functions f
such that f ′(x) = yx−t with y 6= 0 and t > 0. More precisely, given any
exponent pair (k, l), we can produce new ones, A(k, l) = (k′, l′) and
B(k, l) = (k′′, l′′), using the A and B process, respectively.

Roughly, this works as follows. Recall Theorem 12. Using the mean
value theorem, we have

F ′h(n) = f ′(n+ h)− f ′(n) = hf ′′(x) � |h|FN−2 = |h|LN−1

for some x ∈ [n, n+ h]. Hence, if (k, l) is an exponent pair, then∑
n∈Ih

e(Fh(n))�
(
|h|LN−1

)k
N l = |h|kLkN l−k.

Using Theorem 12, it follows that

∑
n∈I

e(f(n))� N

H1/2
+
N1/2

H1/2
·

 ∑
16|h|6H

|h|kLkN l−k

1/2

�NH−1/2 +N (l−k+1)/2Hk/2Lk/2.

We balance the two terms in the last bound choosing

H :=
[
L−k/(k+1)N (k−l+1)/(k+1)

]
,

thus getting ∑
n∈I

e(f(n))� Lk/(2(k+1))N (k+l+1)/(2(k+1)).
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So if (k, l) is an exponent pair, then so is

(6.2) A(k, l) :=

(
k

2(k + 1)
,
k + l + 1

2(k + 1)

)
.

Next, recall Theorem 21 (resp. Theorem 22) and (5.8) (resp. (5.10)).
Consider, for the moment, h as a continuous variable. Then, using
simple calculus and f ′(xh) = h, which is equivalent to xh = (f ′)−1(h),
we have

Φ′(h) = f ′(xh)·
d

dh
xh−xh−h·

d

dh
xh =

f ′(xh)

f ′′(xh)
−xh−

h

f ′′(xh)
= −xh � N.

Hence, if (k, l) is an exponent pair, then, using α, x ∼ L, it follows that∑
α6h6x

e(φ(h))� NkLl.

Therefore, using Theorem 21 (resp. Theorem 22) and (5.8) (resp.
(5.10)), we obtain∑
a<n6b

e(f(n))� NkLl

(L/N)1/2
+ small errors = Ll−1/2Nk+1/2+ small errors.

So under suitable conditions on f , if (k, l) is an exponent pair, then so
is

(6.3) B(k, l) := (l − 1/2, k + 1/2).

We see that B2(k, l) = B(B(k, l)) = (k, l). So two consecutive B-
processes take us back to where we came from. This is no surprise
but just reflects the fact that applying the Poisson summation formula
(which is underlying the B process) twice brings us back to the original
sum since∑

n∈Z

g(n) =
∑
n∈Z

ĝ(n) =
∑
n∈Z

ˆ̂g(n) =
∑
n∈Z

g(−n) =
∑
n

g(n).

The simplest exponent pair, coming from the trivial bound, is (0, 1).
We have A(0, 1) = (0, 1), so applying A process doesn’t help here. But
applying B process gives B(0, 1) = (1/2, 1/2), which corresponds to the
van der Corput bound, Theorem 7, as we see from our computations
at the beginning of this subsection. Now applying A process gives
(1/6, 2/3), which corresponds to Theorem 3.7. More generally, applying
Aq to (1/2, 1/2) corresponds to Theorem 14.

The set E of all exponent pairs (k, l) that we can produce by iterating
A and B processes consists of the pairs of reals

BεAqkB...Aq3BAq2BAq1B(0, 1) = 1,

where (q1, q2, q3, ..., qk) is any finite sequence of non-negative integers
and ε = 0, 1. It can be seen that always 0 6 k 6 1/2 6 l 6 1. The
set E is interesting. It forms a curve with cusps at infinitely many
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points. Below a picture, produced by a computer program written by
Kamalakshya Mahatab (IMSc Chennai).

Bombieri and Iwaniec [2] produced new (and smaller) exponent pairs
by an ingenious method going beyond applying A and B processes
(sketched in lecture 7). In particular, they proved that (9/56+ε, 37/56+
ε) is an exponent pair. Huxley and Watt later refined their method,
producing slightly smaller exponent pairs. It is conjectured that (ε, 1/2+
ε) is an exponent pair for every ε > 0, i.e. for a certain (large) class of
functions f , we should have∑

n∈I

e(f(n)) = N1/2+ε.

This so-called “exponent pair hypothesis” would imply the Lindelöf hy-
pothesis and also the optimal bound for the error term in the Dirichlet
divisor problem, as we will see in the following subsection.
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Let us look again at the prototype functions f(x) for which f ′(x) =
yx−t with y > 0 and t > 0. In this case, the exponent pair (k, l) gives∑

n∈I

e(f(n))�
(
yN−t

)k
N l = ykN l−tk.

If, in addition, the size of y depends on that of N , y � Nu, say, then
we deduce that ∑

n∈I

e(f(n))� N (u−t)k+l.

To get an as good as possible bound, we thus need to minimize
(u− t)k + l. A general algorithm to minimize the quantity

ak + bl + c

dk + el + f

for (k, l) ∈ E and given reals a, b, c, d, e, f is described in [4].

6.2. Applications. We return to the Dirichlet divisor problem and
try to improve upon the exponent 1/3 in the error term bound (2.2)
in Lemma 8. We will be a bit sloppy since we haven’t developed the
theory of exponent pairs in full detail. Recall the proof of the said
lemma. So we aim for a bound of the form∑

y<s62y

ψ
(x
s

)
6 xw

with w < 1/3 if 1 6 y 6 x1/2. If y 6 xw, then this is trivial, so we may
assume that xw < y 6 x1/2. Recall the inequality

(6.4)
∑

y/2<s6y

ψ
(x
s

)
�

∑
16m6M

1

m
·

∣∣∣∣∣∣
∑

y/2<n6y

e
(
m · x

n

)∣∣∣∣∣∣+
y

M

from the said proof. So if (k, l) is an exponent pair, then (after properly
checking the conditions on the function f(n) = mx/n from the theory
of exponent pairs) we will get∑

y/2<n6y

e
(
m · x

n

)
�
(
mx

y2

)k
yl = (mx)kyl−2k.

Hence, from (6.4), we deduce that∑
y/2<s6y

ψ
(x
s

)
� (Mx)kyl−2k +

y

M
,

provided k > 0. Choosing

M :=
[
x−k/(k+1)y(1+2k−l)/(k+1)

]
,

we thus obtain ∑
y/2<s6y

ψ
(x
s

)
� y(l−k)/(k+1)xk/(k+1).
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We recall that k 6 l. So since y 6 x1/2, it follows that∑
y/2<s6y

ψ
(x
s

)
� x(k+l)/(2(k+1)).

So by the first steps in the proof of Lemma 8, we deduce that the
exponent 1/3 in (2.2) can be replaced by D(k, l) := (k + l)/(2(k + 1)).

Note that (k, l) = (1/2, 1/2) = B(0, 1) gives us back D(k, l) = 1/3.
So what happens if we apply an A process after the B process? Then
we get, as already mentioned, the exponent pair AB(0, 1) = (1/6, 2/3),
yielding D(k, l) = 5/14 > 1/3. This worsens the result. So we need
to apply another A process since applying B process fixes this (and
only this) exponent pair (1/6, 2/3) because B(1/6, 2/3) = (1/6, 2/3)
by (6.3). We compute that A2B(0, 1) = A(1/6, 2/3) = (1/14, 11/14).
This gives D(k, l) = 2/5 which is even worse. Applying one more
B process, we get BA2B(0, 1) = B(1/14, 11/14) = (2/7, 4/7), which
gives D(k, l) = 1/3. So we are back to the original exponent. Ap-
plying one more A process will again worsen the result, so let’s try
BA3B(0, 1) = BA(1/14, 11/14) = B(1/30, 26/30) = (11/30, 16/30).
This gives D(k, l) = 27/82 < 1/3. Finally, we have improved upon
1/3! This exponent 27/82 was obtained by van der Corput already in
1927.

The general algorithm, mentioned earlier, gives us a complicated
sequence, leading to D(k, l) = 0.329021.... Under the exponent pair
hypothesis, i.e. the conjecture that (ε, 1/2 + ε) is an exponent pair for
every ε > 0, we would get the optimal exponent D(k, l) = 1/4 + ε′

(where ε′ depends on ε and can be made arbitrarily small by making ε
small enough). The record so far is 131/416 = 0.31490... due to Huxley
[7]. His method refines that of Bombieri-Iwaniec [2]. Let us state his
result as a theorem.

Theorem 23 (Huxley, 2003). We have

D(x) = x log x+ (2γ − 1)x+ ∆(x)

with

∆(x) = O
(
x131/416+ε

)
.

Now that we have dealt with the Dirichlet divisor problem again, let
us briefly look at another of the numerous applications of the theory of
exponent pairs. The growth of the Riemann zeta function on the critical
line is a very important problem. Under the Riemann Hypothesis, we
know that the Lindelöf hypothesis,

ζ

(
1

2
+ it

)
�ε |t|ε for every ε > 0 and |t| > 1

holds. The convexity bound, which just follows from the Phragmen-
Lindelöf principle and the functional equation for the Riemann zeta
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function, is

ζ

(
1

2
+ it

)
� |t|1/4.

The way to link the Riemann zeta function on the critical line with
exponential sums is to approximate ζ

(
1
2

+ it
)

by expressions of the
shape

T∑
n=1

n−1/2−it.

The series

ζ(s) =
∞∑
n=1

n−s

defining ζ(s) for <s > 1 doesn’t necessarily converge if <s < 1, but
partial sums of this series give good approximations. Now, the above
sum can be rewritten as weighted exponential sum, namely

T∑
n=1

n−1/2−it =
T∑
n=1

n−1/2 · e
(
t

2π
· log n

)
,

and the weight n1/2 can be removed using partial summation. As an
outcome of this, one can show that∣∣∣∣ζ (1

2
+ it

)∣∣∣∣� (log |t|)·

(
1 + sup

16y6z62y6t
y−1/2

∣∣∣∣∣ ∑
y<n6z

e

(
t

2π
· log n

)∣∣∣∣∣
)
.

Now, exponent pairs give∑
y<n6z

e

(
t

2π
· log n

)
�
(
t

y

)k
yl � |t|kyl−k.

Since (l−1/2, k+1/2) = B(k, l) is another exponent pair, we also have∑
y<n6z

e

(
t

2π
· log n

)
� |t|l−1/2yk−l+1.

Taking the geometric mean of these two bounds, we get∑
y<n6z

e

(
t

2π
· log n

)
� |t|(2k+2l−1)/4y1/2

which implies

(6.5)

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣� |t|(2k+2l−1)/4 log |t|.

Thus, we need to minimize the quantity Z(k, l) = (2k+ 2l− 1)/4. The
general algorithm leads to Z(2k+2l−1)/4 = 0.16451.... The exponent
pair hypotesis would give Z(k, l) = ε and hence the Lindelöf hypothesis.
The latest record, using methods going beyond the classical theory of
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exponent pairs, due to Bourgain [3]. Bourgain’s method improves that
of Huxley [7] at a particular point. Let us state his result as a theorem.

Theorem 24 (Bourgain, 2016). For every ε > 0 and |t| > 1, we have

ζ

(
1

2
+ it

)
�ε |t|13/84+ε.

7. Lecture 7 - The method of Bombieri and Iwaniec

In a nutshell, Bombieri’s and Iwaniec’s method, developed in [2],
works as follows. After an averaging process with some similarity to
Weyl differencing, one is left with sums of short exponential sums with
amplitude function Gm(n) = f(m + n) − f(m). This function is de-
veloped into a cubic Taylor polynomial. The coefficients of the linear
and quadratic terms are approximated by rationals with the same de-
nominator. One is left with sums of incomplete quadratic Gauss sums,
disturbed by a cubic term. After applying Poisson summation, this sum
is turned into a sum of products of complete quadratic Gauss sums and
cubic exponential integrals. The quadratic Gauss sums are evaluated
explicitly, and the cubic exponential integrals are approximated via
stationary phase. Combining everything, one is led to sums of expo-
nential terms e(g), g depending on several parameters. These sums
are treated using the double large sieve. This leads to a complicated
spacing problem regarding the points g.

In the following, we give a more detailed description, but the expo-
sition remains very sketchy. We follow [4], section 7. Bombieri and
Iwaniec [2] established their method for the special function f(n) =
t log n to deduce a new bound for the growth of the Riemann zeta
function, namely

(7.1) ζ

(
1

2
+ it

)
� t9/56+ε.

Their method has been extended by Huxley and Watt [5] to general
amplitude functions f(n) in the class to which the theory of exponent
pairs applies. The new exponent pair produced by this method is the
following.

Theorem 25. For every ε > 0,(
9

56
+ ε,

37

56
+ ε

)
is an exponent pair.

Note that due to (6.5), the above implies (7.1). We have seen that
AB(0, 1) = (1/6, 2/3) is an exponent pair. Note that 9/56 < 1/6 and
37/56 < 2/3. So we really get a genuinly new exponent pair which
cannot be obtained using only A and B processes.
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7.1. Averaging process. We consider exponential sums over dyadic
intervals,

S =
∑

M<m6M1

e(f(m))

with M , M1 integers such that M < M1 6 2M . Let N be an integer,
to be fixed later, which is thought of as small compared to M but not
too small. Suppose that N 6 (M1 −M)/2. We write

NS =
∑

N<n62N

∑
M<m6M2

e(f(m+ n)) +O
(
N2
)
,

where M2 := M1 − 2N . It follows that

S � 1

N
·
∑

M<m6M2

∣∣∣∣∣ ∑
N<n62N

e(f(m+ n)− f(m))

∣∣∣∣∣+O(N).

Thus, we have estimated S in terms of a sum of short sums.

7.2. Approximation by a cubic Taylor polynomial. Now, for
M < m 6M2 and N < n 6 2N , we write

f(m+ n)− f(m) = f ′(m)n+
f ′′(m)

2
· n2 +

f ′′′(m)

6
· n3 + error.

The error is small and can be removed if f satisfies suitable conditions
and N is small enough. It remains to bound∑

M<m6M2

∣∣∣∣∣ ∑
N<n6N0

e

(
f ′(m)n+

f ′′(m)

2
· n2 +

f ′′′(m)

6
· n3

)∣∣∣∣∣
for N < N0 6 2N .

7.3. Diophantine approximation. Let M < m 6 M2. By Dirich-
let’s approximation theorem, there exist coprime integers a, c with
1 6 c 6 N such that the middle coefficent of the above cubic poly-
nomial satisfies ∣∣∣∣f ′′(m)

2
− a

c

∣∣∣∣ 6 1

cN
.

We write

(7.2) m = [m(a, c)] + l,

where m(a, c) is the solution x of

f ′′(x)

2
=
a

c
,

where we impose the condition that f ′′ is monotonic on [M,M1]. Thus
our sum in question turns into∑

c

∑
a

∑
l

∣∣∣∣∣ ∑
N<n6N0

e

(
f ′(m)n+

f ′′(m)

2
· n2 +

f ′′′(m)

6
· n3

)∣∣∣∣∣ ,
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where c, a, l are in suitable ranges and m depends on c, a, l by the
equation (7.2). We replace the coefficient f ′′(m)/2 by a/c and the
coefficient f ′′′(m)/6 by

µ =
1

6
· f ′′′(m(a, c))

at the cost of a small error which can be removed. This leads us to
sums of the form∑

c

∑
a

∑
l

∣∣∣∣∣ ∑
N<n6N1

e
(
f ′(m)n+

a

c
· n2 + µn3

)∣∣∣∣∣
with N < N1 6 N0.

Next, we approximate the coefficient f ′(m) in terms of c, a, l. By
Taylor expansion and the definitions of m(a, c) and l, we have

f ′(m) =f ′([m(a, c)]) + lf ′′([m(a, c)]) + error

=f ′([m(a, c)]) + lf ′′(m(a, c)) + error′ = f ′([m(a, c)]) +
2la

c
+ error′.

Further, let b be an integer such that b/c is as close to f ′(m(a, c)) as
possible. Then, altogether, we get an approximation of f ′(m) by

f ′(m) =
b+ 2al

c
+ error.

Eventually, we are led to sums of the form∑
c

∑
a

∑
l

∣∣∣∣∣ ∑
N<n6N2

e

(
b+ 2al

c
· n+

a

c
· n2 + µ · n3

)∣∣∣∣∣
with N < N2 6 N1, where b and µ depend on c, a, l. (In fact, the story
is slightly more complicated, but we cheat a bit.)

7.4. Application of Poisson summation. We now transform the
incomplete quadratic Gauss sum with cubic perturbance,∑

N<n6N2

e

(
b+ 2al

c
· n+

a

c
· n2 + µ · n3

)
using Poisson summation. First, we split the summation over n into
residue classes modulo c, getting∑

N<n6N2

e

(
b+ 2al

c
· n+

a

c
· n2 + µ · n3

)

=
c∑

d=1

e

(
b+ 2al

c
· d+

a

c
· d2
)
·
∑

N<n6N2
n≡d mod c

e
(
µ · n3

)
.
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We make a linear change k = (n− d)/c of variables to write∑
N<n6N2
n≡d mod c

e
(
µ · n3

)
=

∑
(N−d)/c<k6(N2−d)/c

e
(
µ · (ck + d)3

)
.

Now, we apply the truncated Poisson summation formula, Lemma 16,
to get ∑

(N−d)/c<k6(N2−d)/c

e
(
µ · (ck + d)3

)

=
∑

H16H6H2

(N2−d)/c∫
(N−d)/c

e
(
µ · (cx+ d)3 − hx

)
dx+O (log(H2 −H1))

for suitable H1, H2 ∈ Z. By another linear change of variables y =
cx+ d, it follows that∑

(N−d)/c<k6(N2−d)/c

e
(
µ · (ck + d)3

)

=
1

c
· e
(
hd

c

)
·
∑

H16H6H2

N2∫
N

e

(
µ · y3 − h

c
· y
)
dy +O (log(H2 −H1)) .

Combining everything and re-arranging summations, we obtain∑
N<n6N2

e

(
b+ 2al

c
· n+

a

c
· n2 + µ · n3

)

=
∑

H16h6H2

(
c∑

d=1

e

(
b+ 2al + h

c
· d+

a

c
· d2
))
·
N2∫
N

e

(
µ · y3 − h

c
· y
)
dy + error.

7.5. Remainder of the method. So far, the method is not difficult
to understand. Here comes the point where it gets complicated and
the fun starts. The reader is invited to study the remainder of the
method in detail. We say only a few sentences about it. This part of
the method has since been refined further, in particular by Huxley [7]
and Bourgain [3].

The complete quadratic Gauss sums

S(a, b+ 2al + h; c) =
c∑

d=1

e

(
b+ 2al + h

c
· d+

a

c
· d2
)

can be evaluated explicitly (see [4], for example). In particular, Kloost-
erman fractions of the form a/c, where aa ≡ 1 mod c, come into play.
For the cubic exponential integrals

2N∫
N

e

(
µ · y3 − h

c
· y
)
dy,
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we also have an explicit evaluation using stationary phase. It turns out
that cubic semipowers h3/2 come into play. Eventually, we are led to
sums of the form∑

c

∑
a

∑
l

∣∣∣∣∣∑
h

e

(
a

c
· h

2

4
+
ab− 2l + cη

c
· h

2
− νh3/2

c

)∣∣∣∣∣ ,
where

ν =
4

3
· (2cf ′′′(m(a, c)))

−1/2

and η is a real number which does not depend on the variables of
summation. Using Hölder’s inequality, the above sum is bounded in
terms of∑

c

∑
a

∑
l

∣∣∣∣∣∑
h

e

(
a

c
· h

2

4
+
ab− 2l + cη

c
· h

2
− νh3/2

c

)∣∣∣∣∣
4

.

After expanding the fourth power, this reduces to bounding certain
bilinear forms which is carried out using a tool called double large
sieve. One is left with a complicated spacing problem which requires
counting variables in certain ranges and satisfying certain inequalities
and equations. In particular, one needs to count 8-tuples (h1, ..., h8) of
integers satisfying the system

4∑
j=1

(
h2j − h2j+4

)
=0

4∑
j=1

(hj − hj+4) =0

4∑
j=1

(
h
3/2
j − h

3/2
j+4

)
�G

for some G > 0. After solving the said counting problems and choosing
the parameter N suitably, one obtains the desired bound∑

M<m6M1

e (f(n))� L9/56+εM37/56+ε,

where L is the size of f ′(x) on (M,M1].
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8. Tutorial problems

The main objects of the tutorials are to apply the material to the Gauss
circle problem (counting lattice points enclosed by a circle) and to sup-
ply some proofs for lemmas not proved in the lectures.

Tutorial 1: 1.1 Let r(n) be the number of ways of writing the natural
number n as a sum of two squares. Prove that

r(n) = 4
∑
d|n

χ4(d),

where χ4 is the non-trivial character modulo 4.

1.2 (Gauss circle problem) For x > 0, let C(x) be the number of stan-
dard lattice points included in a circle of radius

√
x, centered at the

origin. Prove that

C(x) = πx+O
(
x1/2

)
.

Tutorial 2: 2.1 Prove that∑
s6y

1

s
= log y + γ − ψ(y)

y
+O

(
1

y2

)
as y → ∞, where γ is the Euler constant and ψ(y) is the sawtooth
function, defined by ψ(y) = y − [y]− 1/2.

2.2 Let C(x) be the function defined in problem 1.2. Prove that

C(x) = πx+R(x) +O(1),

where

R(x) = 4
∑
d6
√
x

(
ψ

(
x

4d+ 1

)
− ψ

(
x

4d+ 3

)
+ ψ

(
x− 3d

4d

)
− ψ

(
x− d

4d

))
+O(1).

Tutorial 3: 3.1 Using Vaaler’s trigonometric polynomial approxima-
tion for the function ψ(x), express the error term R(x), defined in
problem 2.2, in terms of exponential sums.
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3.2 Use the van der Corput bound to prove that

C(x) = πx+O
(
x1/3+ε

)
.

Tutorial 4: 4.1. Prove the Kusmin-Landau bound: Assume that f is a
real-valued function which is continuously differentiable on the interval
I which has a monotonic derivative and satisfies ||f ′(x)|| > δ > 0 on I,
where ||z|| is the distance of z to the nearest integer. Then∑

n∈I

e(f(n)) = O(δ−1).

4.2 Go through Vaaler’s construction of a trigonometric polynomial ap-
proximation for the function ψ(x).

Tutorial 5: 5.1. Prove the truncated Poisson summation formula:
Suppose f is a real valued function which has two continuous deriva-
tives on the interval [a, b]. Suppose also that f ′ is decreasing in [a, b],
that H1 and H2 are integers such that H1 < f ′(x) < H2 for a 6 x 6 b
and that H = H2 −H1 = 2. Then∑

a6n6b

e(f(n)) =
∑

H16h6H2

b∫
a

e(f(n)− hx) dx+O (logH) .

5.2 Use the B-process to transform the exponential sums encountered
in the Dirichlet divisor problem and the Gauss circle problem into new
exponential sums.

Tutorial 6: 6.1 Combine the A- and B-processes to improve the ex-
ponent 1/3 in problem 3.2.

6.2 Use your knowledge to derive nontrivial bounds for sums of the
form ∑

N<n6N ′

nit,

where t is a real number and 0 < N < N ′ 6 2N . (Such sums come up
in connection with bounds for the Riemann zeta function.)
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