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1. Large Sieve

Through the problems in this section you will learn about the large sieve. The problems are

divided into three sections : preliminaries, the large sieve and applications.

Preliminaries

1. Fourier Transforms on Finite Commutative Groups.

Let G be a finite commutative group. A homomorphism from G into C∗ is called a character

of G. Since G is finite the image of any character of G is in fact contained in T, the subgroup

of C∗ comprising the complex numbers of absolute value 1. The set of the characters of Ĝ has

a natural group structure and with this structure this set is called the dual group of G or the

character group of G and is denoted by Ĝ. The group Ĝ is a finite commutative group that is

(non-canonically) isomorphic toG. The dual group of Ĝ is canonically isomorphic toG by means

of the map g 7→ evg, where evg(χ) = χ(g) is the evaluation map on Ĝ.

1.1. For any finite commutative group G, show that
∑

g∈G χ(g) = 0 when χ is a non-trivial

element in Ĝ and and is |G|when χ is the trivial element of Ĝ. Apply this to calculate
∑

χ∈Ĝ χ(g),

for any g in G.

1.2 Let V (G) be the set of complex valued functions on G. Then check that V (G) has a natural

structure of a C-vector space and that the dimension of this is vector space is |G|. For any f and

h in V (G) we set 〈f, g〉 =
∑

g∈G f(g)h(g). Check that 〈, 〉 gives V (G) the structure of a Hermitian

inner product space over C.

1.3 Verify that the characters of G form an orthogonal basis for V (G). For any f in V (G) and any

character χ of G, we write f̂(χ) to denote the coefficient of χ when f is expressed in this basis.

Conclude the following relations.
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f̂(χ) =
1

|G|
∑
g∈G

f(g)χ(g) . (1)

∑
χ∈Ĝ

|f̂(χ)|2 =
1

|G|
∑
g∈G
|f(g)|2 . (2)

The second relation above is called the Plancherel formula for G.

2. The Selberg-Beurling Function.

Let I = [a, b] be a compact interval in R and δ be a real number> 0. In this part we shall construct

a complex valued function function φ, called the Selberg- Beurling function, on R satisfying the

following conditions.

(i) The function φ is the restriction to the real line of an entire function. Moreover φ is in L1(R)

and satisfies φ(x) ≥ χI(x) for all x in R, where χI is the characteristic function of the interval I .

(ii) The fourier transform φ̂ of φ is supported in [−δ, δ].

(iii) We have φ̂(0) = b− a+ 1
δ .

We introduce the function K(z) =
(
sinπz
πz

)2, which is an entire function on the complex plane

and satifies K(z) = K(−z) for all complex numbers z.

2.1 Verify that K(x), for x in R, is in L1(R) and
∫
RK(x)dx = 1. Moreover that for all complex

numbers z we have

1 =
∑
n∈Z

K(z − n) . (3)

Hint.— Note that K(x) is the fourier tranform of the function on the real line given by 1 − |x|
when |x| ≤ 1 and 0 for all other x. Apply the Poisson summation formula for the second part.

2.2 Show that for any real number x > 0 we have the inequalities

∑
n≥0

1

(x+ n)2
≥ 1

x
≥
∑
n≥1

1

(x+ n)2
. (4)

Hint.— First observe that for any integer n ≥ 0 and x > 0 we have the inequalities
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1

(x+ n)2
≥ 1

(x+ n)(x+ n+ 1)
≥ 1

(x+ n+ 1)2
. (5)

Sum these inequalities over n ≥ 0 and evaluate the sum in the middle of the resulting relation.

For any complex number z we define sgn(z) to be 1 when Re(z) ≥ 0 and to be−1 when Re(z) < 0.

With this notation we define B(z) for any complex number z by the relation

B(z) = 2zK(z) +
∑
n∈Z

sgn(n)K(z − n) . (6)

2.3 Show that B(z) is an entire function that satisfies the following conditions.

(i) We have that B(z) +B(−z) = 2K(z) for all complex numbers z.

(ii) B(n) = sgn(n) for all n in Z. We have B(z)−1 = 2zK(z)−2
∑

n≥1K(z+n) when Re(z) ≥ 0.

We have B(z) + 1 = 2zK(z) + 2
∑

n≥0K(z − n) when Re(z) < 0.

Hint.— For the second part of (ii) subtract (3) from (6). For the third part, add.

(iii) Using Problem 2.2 and (ii) above deduce that B(x) ≥ sgn(x) for all real numbers x.

(iv) Show that
∫
R(B(x)− sgn(x))dx = 1 and hence that B(x)− sgn(x) is in L1(R).

Hint.— If f(x) = B(x) − sgn(x) then by (iii) above f(x) ≥ 0. Check that f(x) + f(−x) =

B(x) +B(−x) for all x 6= 0 in R. Conclude from (i) above that
∫
R f(x)dx =

∫
RK(x)dx = 1.

(iv) Show that there is a constant C > 0 such that |B(z) − sgn(z)| ≤ Ce2π|Im(z)|

1+|z|2 , for all complex

numbers z.

Hint.— Let us first take up the case when Re(z) ≥ 0, z 6= 0. Show using the second part of (ii)

above that in this case

B(z)− sgn(z) = (sinπz)2
∑
n≥0

1

(z + n)2(z + n+ 1)
. (7)

and consequently that

|B(z)− sgn(z)| ≤ | sinπz|2
∑
n≥0

1

|z + n|3
. (8)

Now note that | sinπz| ≤ eπ|Imz| for all complex numbers z. To bound the infinite series, divide

it into two parts n ≤ 2|z| and n > 2|z|. In the first part, use |z/(z + n)| ≤ 1 for Re(z) ≥ 0. In the
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second part, use |z + n| ≥ n/2. Conclude in this manner that the absolute value of the infinite

series is ≤ C/(1 + |z|2) for some constant C > 0. For Re(z) < 0, use the first case together with

(i) above and the triangle inequality.

2.4 Let δ be a real number > 0 and f(z) be an entire function on the complex plane satifying

|f(z)| ≤ Ce2πδ|Im(z)|

1+|z|2 , for all complex numbers z and some constant C > 0. Show that the re-

striction of f(z) to the real line is in L1(R) and that the fourier transform of this restriction is

supported in the interval [−δ, δ].

Hint.— This is an exercise in contour integration. By changing the variable to z/δ, we reduce to

the case when δ = 1. In this case to show that the fourier transform f̂(t) of the restriction of f

to the real line, which we still denote by f , vanishes for t > 1 consider, for a given t > 1, the

integral of f(z)e−2πizt on the rectangular contour with vertices A, −A, −A − iT and A − iT for

A and T > 0. Using the given growth condition show that the integrals over the sides of the

contour not lying on the X-axis go to 0 as A and T tend to +∞ and conclude. When t < −1, use

a similar contour but this time lying above the X-axis.

2.5 Recall that I denotes the interval [a, b] and that χI is the characteristic function of I . Verify

that for any δ > 0 we have χI(x) = 1
2(sgn((x− a)δ) + sgn((b− x)δ)) for all real x.

2.6 Using the preceding problems conclude that φ(z) = 1
2(B((z − a)δ)+B((b− z)δ)) satisfies the

requirements for φ given at the head of this section.

Hint.— Verify φ(x) = χI(x) +
1
2(B((x− a)δ) − sgn((x− a)δ)) + 1

2(B((b− x)δ) − sgn((b− x)δ)),
for all real x. Note that φ̂(0) =

∫
R φ(x)dx.

3. An Elementary Duality Principle.

The following simple principle is useful in a number of contexts in analytic number theory, even

outside the basic theory of the large sieve.

3.1 For any finite sequence x of complex numbers xl indexed by a finite set L we write ‖x‖2 to

denote
∑

l∈L |xl|2. Let I and J be finite indexing sets and {cij} be a sequence of complex numbers

indexed by I × J . Finally, let M be a real number > 0. Then show that the following statements

are equivalent.

(i)
∑

j∈J |
∑

i∈I aicij |2 ≤M‖a‖2 for all sequences {ai}i∈I of complex numbers .

(ii) |
∑

(i,j)∈I×J aibjcij |2 ≤M‖a‖2‖b‖2 for all sequences of complex numbers {ai}i∈I and {bj}j∈J .
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(iii)
∑

i∈I |
∑

j∈J bjcij |2 ≤M‖b‖2 for all sequences of complex numbers {bj}j∈J .

Hint.— To show (i) implies (ii) write |
∑

(i,j)∈I×J aibjcij | ≤
∑

j∈J |bj ||
∑

i∈I aicij | and apply the

Cauchy-Schwarz Inequality together with (i). To show (ii) implies (i), apply (ii) with bj =∑
i∈I aicij . The equivalence of (iii) with (ii) follows on interchanging the roles of i and j.

The Large Sieve

The large sieve answers the following question. Suppose that M and N are integers with N ≥ 1

and let A be a subset of the integers in the interval [M + 1,M + N ]. For each prime number p

let Ap be a subset of Z/pZ that contains the reduction of A modulo p and let us write |Ap| = vpp.

Thus 0 < vp ≤ 1. The question is to obtain an upper bound for |A| in terms of the vp and N . This

is answered by the following result.

THEOREM . — With notation as above we have for any Q ≥ 1 that

|A| ≤ N − 1 +Q2∑
1≤d≤Q µ

2(d)
∏
p|d

(
1−vp
vp

) . (9)

Note that µ2(d) is 1 when d is square free and is 0 for all other integers d ≥ 1. Thus the role of

the µ2(d) in the summation in the denominator of the right hand side of the above inequality is

only to restrict this summation to square free integers d.

We will obtain a proof of this theorem in two stages. The first is called the arithmetic part of the

large sieve and the second the analytic part.

1. The Arithmetical Part of the Large Sieve.

The point of view here is to apply the fourier transform on R/Z and its finite subgroups groups

to study the question posed above. Recall that Z is identified with the dual group of R/Z,

which we shall hereafter denote by T, by means of the map n 7→ e2πint. In particular, for any

subset X of Z this identification allows us to write χ ∈ X for the set of characters e2πint with

n ∈ X . With this identification we now consider trignometric polynomials supported in A, that

is, trignometric polynomials of the form

f(t) =
∑
χ∈A

aχχ(t) , (10)

where aχ are arbitrary complex numbers.
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1.1 Let Td for any integer d ≥ 1 denote the d torsion subgroup of T. This is, by definition, the

subgroup of T comprising the elements x of T satisfying the relation dx = 0. Check that Td is a

cyclic group of order d.

1.2 The characters of T when restricted to Td are characters for this group. Check that e2πint and

e2πimt define the same character of Td if and only if n and m are the same modulo d. Conclude

we may identify Z/dZ with the dual group of Td by the that associates the class of an integer k

modulo d with e2πikt.

With the identification of Z/dZ with the dual group of Td given above, subsets of Z/dZ are

indentified with sets of characters of Td.

1.3 Let p be a prime number. Check that for any χ in T̂p we have χ /∈ Ap =⇒ f̂(χ) = 0 where f is

the restriction of the trignometric polynomial f of the form (10) to Tp. Now justify the following

relations.

|f(0)|2 = |
∑
χ∈Ap

f̂(χ)| ≤ |Ap|
∑

χ∈Z/pZ

|f̂(χ)|2 = vp
∑
x∈Tp

|f(x)|2 (11)

Conclude from the above relations that for any prime number p and any trignometric polynomial

of the form (10) we have

|f(0)|2
(
1− vp
vp

)
≤
∑
x∈Tp,

x 6=0

|f(x)|2 =
∑
x∈T,

ord(x)=p

|f(x)|2 . (12)

1.5 Suppose that d is a square-free integer. Then using (13) and induction on the number of prime

divisors of d deduce that

|f(0)|2
∏
p|d

(
1− vp
vp

)
≤

∑
x∈T,

ord(x)=d

|f(x)|2 . (13)

Hint.— Suppose that d = p1p2, that is, d has two primefactors. Then obtain the relations

∑
x∈T,

ord(x)=d

|f(x)|2 =
∑
x1∈T,

ord(x1)=p1

∑
x2∈T,

ord(x2)=p2

|f(x1 + x2)|2 ≥
(
1− vp1
vp1

) ∑
x1∈T,

ord(x1)=p1

|f(x1)|2 . (14)

To obtain the first relation note that by the chinese remainder theorem every x ∈ T can be

written in a unique manner as x1 + x2, where x1 and x2 are elements of T of orders p1 and p2
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respectively. The second relation is deduced by applying, for each x1, (12) to the trignometric

polynomial f(x1 + x) which is also of the form (10). Now apply (12) again but this time to f(x)

itself to obtain (13) when d = p1p2.

1.6 Conclude that for any trignometric polynomial of the form (10) and integer Q ≥ 1 we have

the inequality

|f(0)|2
∑

1≤d≤Q
µ2(d)

∏
p|d

(
1− vp
vp

)
≤

∑
x∈T,

1≤ord(x)≤Q

|f(x)|2 . (15)

What is f(0) when all the aχ are taken to be 1 ?

2. The Analytic Large Sieve Inequality

In this section we will obtain the inequality

∑
x∈T,

1≤ord(x)≤Q

|f(x)|2 ≤ (N − 1 +Q2)
∑
χ∈A
|aχ|2 . (16)

for all trignometric polynomials f of the form (10)

For any x in T = R/Z, we set ‖x‖ = infn∈Z |x − n|. For a δ > 0, we say that a set of points

x1, x2, . . . , xl of T is a δ-spaced if ‖xi − xj‖ ≥ δ for any distinct i and j.

2.1 Check that the set of x in T with 1 ≤ ord(x) ≤ Q is the same as the union of the Td with

1 ≤ d ≤ Q and that this union is a 1
Q2 spaced subset of T.

2.2 Verify using the duality principle that in order to obtain (16) it suffices to show that for any

δ-spaced set x1, x2, . . . , xl of points on T and any complex numbers b1, b2, . . . , bl we have

∑
M+1≤n≤M+N

|
∑
1≤i≤l

bie
2πinxi |2 ≤

(
N − 1 +

1

δ

) ∑
1≤i≤l

|bi|2 . (17)

2.3 Let I = [M + 1,M + N ] and φ be the Selberg-Beurling function contructed earlier. With bi

and xi as above justify the relations

∑
M+1≤n≤M+N

|
∑
1≤i≤l

bie
2πinxi |2 ≤

∑
n∈Z

φ(n)|
∑
1≤i≤l

bie
2πinxi |2 =

∑
1≤i,j≤

bibj
∑
n∈Z

φ̂(xi−xj+n) . (18)
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Noting that xi are δ-spaced deduce (18).

2.4 Combine the preceding parts to conclude the Theorem stated at the head of this part (the

large sieve).

Applications

We obtain two simple applications of the large sieve.

3.1 Suppose A is a subset of [M +1,M +N ] such that vp may be taken as α for all prime numbers

upto N1/2. Applying the large sieve with Q = N1/2 show that |A| � N1/2 logN . This means

that if a set integers in [M + 1,M +N ] misses a fixed proportion of residue classes modulo p for

all primes p upto N1/2 then the cardinality of the set must be very small !

3.2 Show that for any M ≥ N ≥ 1 the number of prime numbers in the interval [M + 1,M +N ]

is� N/ logN . To do this apply (with justification) the large sieve with Q = N1/2 and Ap taken

to be the invertible residue classes in Z/pZ for each prime p ≤ N1/2. Finally, note the following

inequalities

∑
1≤d≤Q

µ2(d)
∏
p|d

1

p− 1
=

∑
1≤d≤Q

µ2(d)

φ(d)
≥

∑
1≤d≤Q

1

d
� logQ . (19)
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