IST in Analytic Number Theory ISI Kolkata, December 2017

1. Large Sieve

Through the problems in this section you will learn about the large sieve. The problems are divided into three sections: preliminaries, the large sieve and applications.

Preliminaries

1. Fourier Transforms on Finite Commutative Groups.

Let G be a finite commutative group. A homomorphism from G into G is called a character of G. Since G is finite the image of any character of G is in fact contained in G, the subgroup of G comprising the complex numbers of absolute value 1. The set of the characters of G has a natural group structure and with this structure this set is called the dual group of G or the character group of G and is denoted by G. The group G is a finite commutative group that is (non-canonically) isomorphic to G. The dual group of G is canonically isomorphic to G by means of the map $G \mapsto ev_G$, where Ev_G is the evaluation map on E.

- 1.1. For any finite commutative group G, show that $\sum_{g \in G} \chi(g) = 0$ when χ is a non-trivial element in \hat{G} and and is |G| when χ is the trivial element of \hat{G} . Apply this to calculate $\sum_{\chi \in \hat{G}} \chi(g)$, for any g in G.
- 1.2 Let V(G) be the set of complex valued functions on G. Then check that V(G) has a natural structure of a ${\bf C}$ -vector space and that the dimension of this is vector space is |G|. For any f and h in V(G) we set $\langle f,g\rangle=\sum_{g\in G}f(g)\overline{h(g)}$. Check that \langle ,\rangle gives V(G) the structure of a Hermitian inner product space over ${\bf C}$.
- 1.3 Verify that the characters of G form an orthogonal basis for V(G). For any f in V(G) and any character χ of G, we write $\widehat{f(\chi)}$ to denote the coefficient of χ when f is expressed in this basis. Conclude the following relations.

1

$$\widehat{f(\chi)} = \frac{1}{|G|} \sum_{g \in G} f(g) \overline{\chi(g)} . \tag{1}$$

$$\sum_{\chi \in \hat{G}} |\widehat{f(\chi)}|^2 = \frac{1}{|G|} \sum_{g \in G} |f(g)|^2.$$
 (2)

The second relation above is called the Plancherel formula for *G*.

2. The Selberg-Beurling Function.

Let I = [a, b] be a compact interval in \mathbf{R} and δ be a real number > 0. In this part we shall construct a complex valued function function ϕ , called the Selberg-Beurling function, on \mathbf{R} satisfying the following conditions.

- (i) The function ϕ is the restriction to the real line of an entire function. Moreover ϕ is in L¹(**R**) and satisfies $\phi(x) \ge \chi_I(x)$ for all x in **R**, where χ_I is the characteristic function of the interval I.
- (ii) The fourier transform $\hat{\phi}$ of ϕ is supported in $[-\delta, \delta]$.
- (iii) We have $\hat{\phi}(0) = b a + \frac{1}{\delta}$.

We introduce the function $K(z)=\left(\frac{sin\pi z}{\pi z}\right)^2$, which is an entire function on the complex plane and satisfies K(z)=K(-z) for all complex numbers z.

2.1 Verify that K(x), for x in \mathbf{R} , is in $L^1(\mathbf{R})$ and $\int_{\mathbf{R}} K(x) dx = 1$. Moreover that for all complex numbers z we have

$$1 = \sum_{n \in \mathbf{Z}} K(z - n) . \tag{3}$$

Hint.— Note that K(x) is the fourier tranform of the function on the real line given by 1 - |x| when $|x| \le 1$ and 0 for all other x. Apply the Poisson summation formula for the second part.

2.2 Show that for any real number x > 0 we have the inequalities

$$\sum_{n\geq 0} \frac{1}{(x+n)^2} \ge \frac{1}{x} \ge \sum_{n\geq 1} \frac{1}{(x+n)^2} . \tag{4}$$

Hint.— First observe that for any integer $n \ge 0$ and x > 0 we have the inequalities

$$\frac{1}{(x+n)^2} \ge \frac{1}{(x+n)(x+n+1)} \ge \frac{1}{(x+n+1)^2} \,. \tag{5}$$

Sum these inequalities over $n \ge 0$ and evaluate the sum in the middle of the resulting relation.

For any complex number z we define sgn(z) to be 1 when $Re(z) \ge 0$ and to be -1 when Re(z) < 0. With this notation we define B(z) for any complex number z by the relation

$$B(z) = 2zK(z) + \sum_{n \in \mathbb{Z}} \operatorname{sgn}(n)K(z-n) . \tag{6}$$

2.3 Show that B(z) is an entire function that satisfies the following conditions.

- (i) We have that B(z) + B(-z) = 2K(z) for all complex numbers z.
- (ii) B(n) = sgn(n) for all n in **Z**. We have $B(z) 1 = 2zK(z) 2\sum_{n \ge 1} K(z+n)$ when $\text{Re}(z) \ge 0$. We have $B(z) + 1 = 2zK(z) + 2\sum_{n \ge 0} K(z-n)$ when Re(z) < 0.

Hint.— For the second part of (*ii*) subtract (3) from (6). For the third part, add.

- (iii) Using Problem 2.2 and (ii) above deduce that $B(x) \ge \operatorname{sgn}(x)$ for all real numbers x.
- (iv) Show that $\int_{\mathbf{R}} (B(x) \operatorname{sgn}(x)) dx = 1$ and hence that $B(x) \operatorname{sgn}(x)$ is in $L^1(\mathbf{R})$.

Hint.— If $f(x) = B(x) - \operatorname{sgn}(x)$ then by (iii) above $f(x) \ge 0$. Check that f(x) + f(-x) = B(x) + B(-x) for all $x \ne 0$ in **R**. Conclude from (i) above that $\int_{\mathbf{R}} f(x) dx = \int_{\mathbf{R}} K(x) dx = 1$.

(iv) Show that there is a constant C>0 such that $|B(z)-\operatorname{sgn}(z)|\leq \frac{Ce^{2\pi|\operatorname{Im}(z)|}}{1+|z|^2}$, for all complex numbers z.

Hint.— Let us first take up the case when $Re(z) \ge 0$, $z \ne 0$. Show using the second part of (ii) above that in this case

$$B(z) - \operatorname{sgn}(z) = (\sin \pi z)^2 \sum_{n \ge 0} \frac{1}{(z+n)^2 (z+n+1)} . \tag{7}$$

and consequently that

$$|B(z) - \operatorname{sgn}(z)| \le |\sin \pi z|^2 \sum_{n > 0} \frac{1}{|z + n|^3} . \tag{8}$$

Now note that $|\sin \pi z| \le e^{\pi |\text{Im} z|}$ for all complex numbers z. To bound the infinite series, divide it into two parts $n \le 2|z|$ and n > 2|z|. In the first part, use $|z/(z+n)| \le 1$ for $\text{Re}(z) \ge 0$. In the

second part, use $|z + n| \ge n/2$. Conclude in this manner that the absolute value of the infinite series is $\le C/(1+|z|^2)$ for some constant C > 0. For Re(z) < 0, use the first case together with (i) above and the triangle inequality.

2.4 Let δ be a real number > 0 and f(z) be an entire function on the complex plane satisfying $|f(z)| \leq \frac{Ce^{2\pi\delta|\operatorname{Im}(z)|}}{1+|z|^2}$, for all complex numbers z and some constant C>0. Show that the restriction of f(z) to the real line is in $L^1(\mathbf{R})$ and that the fourier transform of this restriction is supported in the interval $[-\delta, \delta]$.

Hint.— This is an exercise in contour integration. By changing the variable to z/δ , we reduce to the case when $\delta=1$. In this case to show that the fourier transform $\hat{f}(t)$ of the restriction of f to the real line, which we still denote by f, vanishes for t>1 consider, for a given t>1, the integral of $f(z)e^{-2\pi izt}$ on the rectangular contour with vertices A, -A, -A-iT and A-iT for A and T>0. Using the given growth condition show that the integrals over the sides of the contour not lying on the X-axis go to 0 as A and T tend to $+\infty$ and conclude. When t<-1, use a similar contour but this time lying above the X-axis.

- 2.5 Recall that I denotes the interval [a,b] and that χ_I is the characteristic function of I. Verify that for any $\delta > 0$ we have $\chi_I(x) = \frac{1}{2}(\operatorname{sgn}((x-a)\delta) + \operatorname{sgn}((b-x)\delta))$ for all real x.
- 2.6 Using the preceding problems conclude that $\phi(z) = \frac{1}{2}(B((z-a)\delta) + B((b-z)\delta))$ satisfies the requirements for ϕ given at the head of this section.

Hint.— Verify
$$\phi(x) = \chi_I(x) + \frac{1}{2}(B((x-a)\delta) - \operatorname{sgn}((x-a)\delta)) + \frac{1}{2}(B((b-x)\delta) - \operatorname{sgn}((b-x)\delta))$$
, for all real x . Note that $\hat{\phi}(0) = \int_{\mathbf{R}} \phi(x) dx$.

3. An Elementary Duality Principle.

The following simple principle is useful in a number of contexts in analytic number theory, even outside the basic theory of the large sieve.

- 3.1 For any finite sequence x of complex numbers x_l indexed by a finite set L we write $||x||^2$ to denote $\sum_{l \in L} |x_l|^2$. Let I and J be finite indexing sets and $\{c_{ij}\}$ be a sequence of complex numbers indexed by $I \times J$. Finally, let M be a real number > 0. Then show that the following statements are equivalent.
- (i) $\sum_{j\in J} |\sum_{i\in I} a_i c_{ij}|^2 \le M \|a\|^2$ for all sequences $\{a_i\}_{i\in I}$ of complex numbers .
- $(ii) \mid \sum_{(i,j) \in I \times J} a_i b_j c_{ij} \mid^2 \leq M \|a\|^2 \|b\|^2 \text{ for all sequences of complex numbers } \{a_i\}_{i \in I} \text{ and } \{b_j\}_{j \in J}.$

.

 $(iii) \sum_{i \in I} |\sum_{j \in J} b_j c_{ij}|^2 \le M \|b\|^2$ for all sequences of complex numbers $\{b_j\}_{j \in J}$.

Hint.— To show (i) implies (ii) write $|\sum_{(i,j)\in I\times J}a_ib_jc_{ij}| \leq \sum_{j\in J}|b_j||\sum_{i\in I}a_ic_{ij}|$ and apply the Cauchy-Schwarz Inequality together with (i). To show (ii) implies (i), apply (ii) with $\overline{b_j} = \sum_{i\in I}a_ic_{ij}$. The equivalence of (iii) with (ii) follows on interchanging the roles of i and j.

The Large Sieve

The large sieve answers the following question. Suppose that M and N are integers with $N \ge 1$ and let A be a subset of the integers in the interval [M+1,M+N]. For each prime number p let A_p be a subset of $\mathbf{Z}/p\mathbf{Z}$ that contains the reduction of A modulo p and let us write $|A_p| = v_p p$. Thus $0 < v_p \le 1$. The question is to obtain an upper bound for |A| in terms of the v_p and N. This is answered by the following result.

THEOREM . — With notation as above we have for any $Q \ge 1$ that

$$|A| \le \frac{N - 1 + Q^2}{\sum_{1 \le d \le Q} \mu^2(d) \prod_{p|d} \left(\frac{1 - v_p}{v_p}\right)}.$$
 (9)

Note that $\mu^2(d)$ is 1 when d is square free and is 0 for all other integers $d \ge 1$. Thus the role of the $\mu^2(d)$ in the summation in the denominator of the right hand side of the above inequality is only to restrict this summation to square free integers d.

We will obtain a proof of this theorem in two stages. The first is called the arithmetic part of the large sieve and the second the analytic part.

1. The Arithmetical Part of the Large Sieve.

The point of view here is to apply the fourier transform on \mathbf{R}/\mathbf{Z} and its finite subgroups groups to study the question posed above. Recall that \mathbf{Z} is identified with the dual group of \mathbf{R}/\mathbf{Z} , which we shall hereafter denote by \mathbf{T} , by means of the map $n\mapsto e^{2\pi int}$. In particular, for any subset X of \mathbf{Z} this identification allows us to write $\chi\in X$ for the set of characters $e^{2\pi int}$ with $n\in X$. With this identification we now consider trignometric polynomials supported in A, that is, trignometric polynomials of the form

$$f(t) = \sum_{\chi \in A} a_{\chi} \chi(t) , \qquad (10)$$

where a_{χ} are arbitrary complex numbers.

- 1.1 Let \mathbf{T}_d for any integer $d \geq 1$ denote the d torsion subgroup of \mathbf{T} . This is, by definition, the subgroup of \mathbf{T} comprising the elements x of \mathbf{T} satisfying the relation dx = 0. Check that \mathbf{T}_d is a cyclic group of order d.
- 1.2 The characters of \mathbf{T} when restricted to \mathbf{T}_d are characters for this group. Check that $e^{2\pi int}$ and $e^{2\pi imt}$ define the same character of \mathbf{T}_d if and only if n and m are the same modulo d. Conclude we may identify $\mathbf{Z}/d\mathbf{Z}$ with the dual group of \mathbf{T}_d by the that associates the class of an integer k modulo d with $e^{2\pi ikt}$.

With the identification of $\mathbf{Z}/d\mathbf{Z}$ with the dual group of \mathbf{T}_d given above, subsets of $\mathbf{Z}/d\mathbf{Z}$ are indentified with sets of characters of \mathbf{T}_d .

1.3 Let p be a prime number. Check that for any χ in $\hat{\mathbf{T}}_p$ we have $\chi \notin A_p \implies \hat{f}(\chi) = 0$ where f is the restriction of the trignometric polynomial f of the form (10) to \mathbf{T}_p . Now justify the following relations.

$$|f(0)|^{2} = |\sum_{\chi \in A_{p}} \hat{f}(\chi)| \le |A_{p}| \sum_{\chi \in \mathbf{Z}/p\mathbf{Z}} |\hat{f}(\chi)|^{2} = v_{p} \sum_{\chi \in \mathbf{T}_{p}} |f(\chi)|^{2}$$
(11)

Conclude from the above relations that for any prime number p and any trignometric polynomial of the form (10) we have

$$|f(0)|^{2} \left(\frac{1 - v_{p}}{v_{p}}\right) \leq \sum_{\substack{x \in \mathbf{T}_{p}, \\ x \neq 0}} |f(x)|^{2} = \sum_{\substack{x \in \mathbf{T}, \\ \operatorname{ord}(x) = p}} |f(x)|^{2}.$$
 (12)

1.5 Suppose that d is a square-free integer. Then using (13) and induction on the number of prime divisors of d deduce that

$$|f(0)|^2 \prod_{p|d} \left(\frac{1-v_p}{v_p}\right) \le \sum_{\substack{x \in \mathbf{T}, \\ \text{ord}(x)=d}} |f(x)|^2.$$
 (13)

Hint.— Suppose that $d = p_1 p_2$, that is, d has two primefactors. Then obtain the relations

$$\sum_{\substack{x \in \mathbf{T}, \\ \operatorname{ord}(x) = d}} |f(x)|^2 = \sum_{\substack{x_1 \in \mathbf{T}, \\ \operatorname{ord}(x_1) = p_1 \text{ ord}(x_2) = p_2}} \sum_{\substack{x_2 \in \mathbf{T}, \\ \operatorname{ord}(x_2) = p_2}} |f(x_1 + x_2)|^2 \ge \left(\frac{1 - v_{p_1}}{v_{p_1}}\right) \sum_{\substack{x_1 \in \mathbf{T}, \\ \operatorname{ord}(x_1) = p_1}} |f(x_1)|^2.$$
(14)

To obtain the first relation note that by the chinese remainder theorem every $x \in \mathbf{T}$ can be written in a unique manner as $x_1 + x_2$, where x_1 and x_2 are elements of \mathbf{T} of orders p_1 and p_2

respectively. The second relation is deduced by applying, for each x_1 , (12) to the trignometric polynomial $f(x_1 + x)$ which is also of the form (10). Now apply (12) again but this time to f(x) itself to obtain (13) when $d = p_1 p_2$.

1.6 Conclude that for any trignometric polynomial of the form (10) and integer $Q \ge 1$ we have the inequality

$$|f(0)|^2 \sum_{1 \le d \le Q} \mu^2(d) \prod_{p|d} \left(\frac{1 - v_p}{v_p}\right) \le \sum_{\substack{x \in \mathbf{T}, \\ 1 \le \operatorname{ord}(x) \le Q}} |f(x)|^2.$$
 (15)

What is f(0) when all the a_{χ} are taken to be 1?

2. The Analytic Large Sieve Inequality

In this section we will obtain the inequality

$$\sum_{\substack{x \in \mathbf{T}, \\ 1 \le \operatorname{ord}(x) \le Q}} |f(x)|^2 \le (N - 1 + Q^2) \sum_{\chi \in A} |a_{\chi}|^2.$$
 (16)

for all trignometric polynomials f of the form (10)

For any x in $\mathbf{T} = \mathbf{R}/\mathbf{Z}$, we set $||x|| = \inf_{n \in \mathbf{Z}} |x - n|$. For a $\delta > 0$, we say that a set of points x_1, x_2, \ldots, x_l of \mathbf{T} is a δ -spaced if $||x_i - x_j|| \ge \delta$ for any distinct i and j.

- 2.1 Check that the set of x in \mathbf{T} with $1 \leq \operatorname{ord}(x) \leq Q$ is the same as the union of the \mathbf{T}_d with $1 \leq d \leq Q$ and that this union is a $\frac{1}{Q^2}$ spaced subset of \mathbf{T} .
- 2.2 Verify using the duality principle that in order to obtain (16) it suffices to show that for any δ -spaced set x_1, x_2, \ldots, x_l of points on **T** and any complex numbers b_1, b_2, \ldots, b_l we have

$$\sum_{M+1 \le n \le M+N} |\sum_{1 \le i \le l} b_i e^{2\pi i n x_i}|^2 \le \left(N - 1 + \frac{1}{\delta}\right) \sum_{1 \le i \le l} |b_i|^2.$$
 (17)

2.3 Let I = [M + 1, M + N] and ϕ be the Selberg-Beurling function contructed earlier. With b_i and x_i as above justify the relations

$$\sum_{M+1 \le n \le M+N} |\sum_{1 \le i \le l} b_i e^{2\pi i n x_i}|^2 \le \sum_{n \in \mathbf{Z}} \phi(n) |\sum_{1 \le i \le l} b_i e^{2\pi i n x_i}|^2 = \sum_{1 \le i,j \le l} b_i \overline{b_j} \sum_{n \in \mathbf{Z}} \hat{\phi}(x_i - x_j + n) .$$
 (18)

Noting that x_i are δ -spaced deduce (18).

2.4 Combine the preceding parts to conclude the Theorem stated at the head of this part (the large sieve).

Applications

We obtain two simple applications of the large sieve.

3.1 Suppose A is a subset of [M+1,M+N] such that v_p may be taken as α for all prime numbers upto $N^{1/2}$. Applying the large sieve with $Q=N^{1/2}$ show that $|A|\ll N^{1/2}\log N$. This means that if a set integers in [M+1,M+N] misses a fixed proportion of residue classes modulo p for all primes p upto $N^{1/2}$ then the cardinality of the set must be very small!

3.2 Show that for any $M \ge N \ge 1$ the number of prime numbers in the interval [M+1, M+N] is $\ll N/\log N$. To do this apply (with justification) the large sieve with $Q=N^{1/2}$ and A_p taken to be the invertible residue classes in $\mathbf{Z}/p\mathbf{Z}$ for each prime $p \le N^{1/2}$. Finally, note the following inequalities

$$\sum_{1 \le d \le Q} \mu^2(d) \prod_{p|d} \frac{1}{p-1} = \sum_{1 \le d \le Q} \frac{\mu^2(d)}{\phi(d)} \ge \sum_{1 \le d \le Q} \frac{1}{d} \gg \log Q.$$
 (19)