AIS - Stochastic Processes and Applications (2024)

Speakers and Syllabus


Syllabus: (Each speaker is required to deliver minimum 6 lectures).  

 

Name of the Speaker with affiliation

No. of Lectures

Detailed Syllabus

 

Prof. Parthanil Roy

ISI Bangalore

 

7.5 hrs

Definition and examples of Discrete-time Markov chains, 1 and n-step transition probability matrices; Communication and irreducibility; Hitting times and absorption probabilities; Strong Markov Property; Recurrence and transience; Invariant distributions. limit theorems for discrete-time Markov chains.

 

Dr. Subhamay Saha

IIT Guwahati

 

6 hrs

Reversible Markov chains

Definition and properties of Renewal Processes; Renewal equations and its generalizations; Elementary renewal theorem, Key renewal theorem; Excess life and age distribution; Renewal reward processes.

 

Dr. Koushik Saha

IIT Bombay

 

 

6 hrs

Exponential distribution and its properties; Definition of Poisson processes, Inter-arrival times, nth arrival time, conditional arrival times; Poisson thinning, merging of two independent Poisson processes; Compound Poisson processes.

 

Dr. Chandan Pal

IIT Guwahati

 

4.5 hrs

Definition and examples of continuous-time Markov chains; Rate matrix, transition probability function, Kolmogorov forward and backward equations; Birth-death processes; Limiting probabilities.

 

 

Prof. Mrinal K. Ghosh

IACS, Kolkata

 

6 hrs

Discrete-time Markov decision processes; Finite horizon problems; Infinite horizon discounted and average cost problems.

Semi-Markov decision processes; Infinite horizon discounted and average cost problems.

 

Prof. N. Selvaraju

IIT Guwahati

 

6 hrs

Characteristics of queueing systems, Little’s law, Markovian and non-Markovian queueing systems, embedded Markov chain applications to M/G/1, G/M/1 and related queueing systems; Networks of queues, open and closed queueing networks; Queues with vacations, priority queues.

References:

  1. J. R. Norris, Markov Chains, Cambridge University Press, 1997.
  2. S. M. Ross, Stochastic Processes, 2nd edition, Wiley, 2008.
  3. S. M. Ross, Applied Probability Models with Optimization Applications, Dover Publications, 1992.
  4.  D. Gross and C. Harris, Introduction to Queueing Theory, 3rd Edition, Wiley, 1998 (WSE Edition), 2004.

 

 Tutorial Assistants:

 

S. No.

Name

Affiliation

1

Bivakar Bose

IIT Guwahati

2

Amit Ghosh

IIT Guwahati

3

Pratim Dey

IIT Guwahati

 

 


Time Table

Time-Table (with names of speakers and course associates/tutors):

 

Day

Date

Lecture 1

(9.30–11.00)

Tea

(11.05 To
11.25)

Lecture 2

(11.30
to
1.00)

Lunch

(1.05
to
2.25)

Tutorial

(2.30
to
3.30)

Tea

(3.35 to
3.55)

Tutorial

(4.00
to
5.00)

Snacks

5.05 to
5.30

 

 

(name of the speaker)

 

(name of the speaker)

 

(name of the speaker + tutors)

 

(name of the speaker + tutors)

 

Mon

13/5

DTMC-1(PR)

 

DTMC-2(PR)

 

PR+PD+AG

 

PR+PD+AG

 

Tues

14/5

PP-1(KS)

 

DTMC-3(PR)

 

KS+PD+AG

 

PR+PD+AG

 

Wed

15/5

DTMC-4(PR)

 

PP-2(KS)

 

PR+PD+BB

 

KS+BB+AG

 

Thu

16/5

DTMC-5(PR)

 

PP-3(KS)

 

PR+BB+AG

 

KS+BB+PD

 

Fri

17/5

DTMC-6(SS)

 

PP-4(KS)

 

SS+BB+AG

 

KS+PD+BB

 

Sat

18/5

RP-1(SS)

 

CTMC-1(CP)

 

SS+PD+AG

 

CP+BB+AG

 

SUNDAY: OFF

Mon

20/5

RP-2(SS)

 

CTMC-2(CP)

 

SS+AG+BB

 

CP+BB+PD

 

Tues

21/5

RP-3(SS)

 

CTMC-3(CP)

 

SS+BB+PD

 

CP+BB+AG

 

Wed

22/5

MDP-1(MKG)

 

QT-1(NS)

 

MKG+PD+AG

 

NS+PD+BB

 

Thu

23/5

MDP-2(MKG)

 

QT-2(NS)

 

MKG+PD+AG

 

NS+AG+BB

 

Fri

24/5

MDP-3(MKG)

 

QT-3(NS)

 

MKG+PD+AG

 

NS+PD+BB

 

Sat

25/5

MDP-4(MKG)

 

QT-4(NS)

 

MKG+BB+PD

 

NS+AG+BB

 

 

DTMC- Discrete-time Markov Chains

PP- Poisson Processes

RP- Renewal Processes

CTMC- Continuous-time Markov Chains

MDP- Markov Decision Processes

QT- Queueing Theory

 

Full forms for the abbreviations of speakers and tutors:

PR: Parthanil Roy

KS: Koushik Saha

SS: Subhamay Saha

CP: Chandan Pal

MKG: Mrinal K. Ghosh

NS: N Selvaraju

PD: Pratim Dey

AG: Amit Ghosh

BB: Bivakar Bose

 

File Attachments: