AIC - Commutative Algebra (2021)

Speakers and Syllabus


Speakers / Lectures

  • Prof. Dilip P. Patil ,
  • Prof. J. K. Verma and
  • Prof. Indranath Sengupta.

Tutors / Tutorials

  • Dr. Sudeshna Roy
  • Dr. Kriti Goel
  • Dr. Joydip Saha.

Prerequisites : Basic Commutative Algebra.
(for example, first 8 Chapters of the Atiyah and Mcdonald’s book).

Name of the Speaker/Tutors
with affiliation
  Topics  

Dilip P. Patil, IISc Bangalore

+

Kriti Goel, IITGN, Gandhinagar

T2 and T5

T 2 : Dimension Theory : (6 Lectures (90 Min.) ; ref : Murthy’s Notes Ch. 2 and Ch. 3)

1.Krull-dimension and Examples, Dimension of an integral extensions (without proofs).
2.Noether’s Normalization Lemma and its consequences.
3.Graded rings and modules, Hilbert functions and series, Hilbert’s Theorem.
4.Hilbert-Samuel functions and polynomials, System of parameters, Dimension Theorem.
5.Dimension of polynomial rings over noetherian rings.
6.Normal rings and their characterizations and properties. Finiteness of integral closure.

T 5 : Complete local rings : (6 Lectures (90 Min.) ;
ref : Murthy’s Notes Ch. 4 and Ch. 9)

1.Derivations and the module of Kähler differentials.
2.Completion of a local ring.
3.Complete local rings, Examples and Properties.
4.Formal smoothness.
5.Formal smoothness and regularity.
6.Cohen’s Structure Theorem for complete local rings.

 

Jugal Verma, IIT Bombay

+
Sudeshna Roy, CMI, Chennai

T4 and T6

T 4 : Cohen-Macaulay rings : (6 Lectures (90 Min.) ;
ref : Murthy’s Notes Ch. 5 and Ch. 6)

1.Regular sequences and Koszul complexes.
2.Quasi-regular sequences.
3.Homological characterisation of depth.
4.Depth lemma, properties of grade of an ideal.
5.Depth and dimension, Cohen-Macaulay modules and rings
6.Properties of CM modules, regular local rings are Cohen-Macaulay.

T 6 : Gorenstein rings : (6 Lectures (90 Min.) ;
ref : Matsumura Ch.6, § 18)
1.Homological characterisation of injective dimension of modules.
2.Characterisation of Gorenstein rings.
3.Basic properties of Goretnstein rings.
4.Examples of Gorenstein rings.
5.Structure of injective modules.
6.Matlis duality.

 

 

Indranath Sengupta, IIT Gandhinagar

+

Joydip Saha, ISI Kolkata

T1 and T3

T 1 : Homological Algebra : (6 Lectures (90 Min.) ;
ref : Bosch : § 4.2, § 4.3, § 5.1, § 5.3 and Singh : Ch. 18)

1.Flat and faithfully flat modules.
2.Extension of coefficients, faithfully flat descent and fibres of flat maps.
3.Complexes, homology and cohomology, the Tor modules, flatness using Tor.
4.Injective resolutions and the Ext modules.
5.Injective dimension and Ext, Projective dimension, Global dimension.
6.Projective dimension over local ring.

T 3 : Regular local rings : (6 Lectures (90 Min.) ;
ref : Murthy’s Notes Ch. 7)
1.Regular local rings.
2.Homological characterisation of regular local rings.
3.Regular rings, Regular local ring is a UFD.
4.The Jacobian criterion for geometric regularity.
5.Flat extensions of regular local rings.
6.Serre’s normality criterion, regular local rings are Cohen-Macaulay and normal.

 

 

 Reference Text books :

  1. Bosch, S. : Algebraic geometry and commutative algebra, Universitext, Springer, (2013).
  2. Bruns, W. and Herzog, J. : Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, revised ed., Cambridge University Press, (1998).
  3. Matsumura, H. : Commutative ring theory, Cambridge University Presss, 1986.
  4. Murthy, M. P. : Commutative Algebra, Course-notes, University of Chicago, 1972 / 73.
  5. Serre, J. -P. : Local Algebra, Springer-Verlag, (2000).
  6. Singh, B. : Basic Commutative Algebra, World Scientific Publications, (2011).

 

 


Time Table

Time-Table ( T 1 : 6 Lectures and T 2 : 6 Lectures )

Date / Day Lecture / Topic / Tutorial Time
Jan 02 , 21
Saturday
Lecture : DPP 1
Krull-dimension, Dimension of an integral extensions.
14:30–16:00
Lecture : IS 1
Flat and faithfully flat modules.
16:30–18:00
Jan 03 , 21
Sunday
Tutorial : KG / DPP 10:00–11:00
Tutorial : JS / IS 11:30–12:30
Jan 09 , 21
Saturday
Lecture : DPP 2
Noether’s Normalization Lemma and its consequences.
14:30–16:00
Lecture : IS 2
Extension of coefficients, faithfully flat descent and fibres of flat maps.
16:30–18:00
Jan 10 , 21
Sunday
Tutorial : KG / DPP 10:00–11:00
Tutorial : JS / IS 11:30–12:30
Jan 16 , 21
Saturday
Lecture : DPP 3
Graded rings and modules, Hilbert functions and Hilbert’s Theorem.
14:30–16:00
Lecture : IS 3
Homology and cohomology, the Tor modules, flatness using Tor.
16:30–18:00
Jan 17 , 21
Sunday
Tutorial : KG / DPP 10:00–11:00 
Tutorial : JS / IS 11:30–12:30
Jan 23 , 21
Saturday
Lecture : DPP 4
Hilbert-Samuel functions and polynomials, System of parameters, Dimension Theorem.
14:30–16:00
Lecture : IS 4
Injective resolutions and the Ext modules.
16:30–18:00
Jan 24 , 21
Sunday
Tutorial : KG / DPP 10:00–11:00 
Tutorial : JS / IS 11:30–12:30
Jan 30 , 21
Saturday
Lecture : DPP 5
Dimension of polynomial rings over noetherian rings.
14:30–16:00
Lecture : IS 5
Injective dimension, Projective dimension, Global dimension.
16:30–18:00
Jan 31 , 21
Sunday
Tutorial : KG / DPP 10:00–11:00
Tutorial : JS / IS 11:30–12:30
Feb 06 , 21
Saturday
Lecture : DPP 6
Normal rings, Finiteness of integral closure.
14:30–16:00
Lecture : IS 6
Projective dimension over local ring.
16:30–18:00
Feb 07 , 21
Sunday
Tutorial : KG / DPP 10:00–11:00
Tutorial : JS / IS 11:30–12:30

 Time-Table ( T 3 : 3 Lectures, T 5 : 3 Lectures and T 4 : 6 Lectures )

Date / Day Lecture / Topic / Tutorial Time
Feb 13 , 21
Saturday
Lecture : DPP7
Derivations and the module of Kähler differentials
14:30–16:00
Lecture : JKV 1
Regular sequences on modules, linear equations with coefficients as regular sequences
16:30–18:00
Feb 14 , 21
Sunday
Tutorial : KG / DPP 10:00–11:00
Tutorial : SR / JKV 11:30–12:30
Feb 20 , 21
Saturday
Lecture : DPP 8 Completion of a local ring 14:30–16:00
Lecture : JKV 2 Homological characterisation of depth 16:30–18:00
Feb 21 , 21
Sunday
Tutorial : KG / DPP 10:00–11:00
Tutorial : SR / JKV 11:30–12:30
Feb 27 , 21
Saturday
Lecture : IS 7 Regular local rings 14:30–16:00
Lecture : JKV 3 Koszul complex and regular sequences 16:30–18:00
Feb 28 , 21
Sunday
Tutorial : JS / IS 10:00–11:00
Tutorial : SR / JKV 11:30–12:30
Mar 06 , 21
Saturday
Lecture : DPP 9 Complete local rings, Examples and Properties 14:30–16:00
Lecture : JKV 4 Depth lemma, properties of grade of an ideal, Depth and dimenion 16:30–18:00
Mar 07 , 21
Sunday
Tutorial : KG / DPP 10:00–11:00
Tutorial : SR / JKV 11:30–12:30
Mar 13 , 21
Saturday
Lecture : IS 8 Homological criterion for regularity 14:30–16:00
Lecture : JKV 5 Cohen-Macaulay rings and modules, Examples 16:30–18:00
Mar 14 , 21
Sunday
Tutorial : JS / IS 10:00–11:00
Tutorial : SR / JKV 11:30–12:30
Mar 20 , 21
Saturday
Lecture : IS 9 Regular rings, Regular local ring is a UFD 14:30–16:00
Lecture : JKV 6 Unmixed theorems of Macaulay and Cohen 16:30–18:00
Mar 21 , 21
Sunday
Tutorial : JS / IS 10:00–11:00
Tutorial : SR / JKV 11:30–12:30

 

Time-Table ( T 3 : 3 Lectures, T 5 : 3 Lectures, and T 6 : 6 Lectures )

Date / Day Lecture / Topic / Tutorial Time
Mar 27 , 21
Saturday
Lecture : IS 10
The Jacobian criterion for geometric regularity
14:30–16:00
Lecture : JKV 7
Homological characterisation of injective dimension of modules
16:30–18:00
Mar 28 , 21
Sunday
Tutorial : JS / IS 10:00–11:00
Tutorial : SR / JKV 11:30–12:30
Apr 03 , 21
Saturday
Lecture : IS 11
Flat extensions of regular rings
14:30–16:00
Lecture : JKV 8
Characterisation of Gorenstein rings
16:30–18:00
Apr 04 , 21
Sunday
Tutorial : JS / IS 10:00–11:00
Tutorial : SR / JKV 11:30–12:30
Apr 10 , 21
Saturday
Lecture : DPP 10
Formal smoothness
14:30–16:00
Lecture : JKV 9
Basic properties of Gorenstein rings
16:30–18:00
Apr 11 , 21
Sunday
Tutorial : KG / DPP 10:00–11:00
Tutorial : SR / JKV 11:30–12:30
Apr 17 , 21
Saturday
Lecture : DPP 11
Formal smoothness and regularity
14:30–16:00
Lecture : JKV 10
Examples of Gorenstein rings
16:30–18:00
Apr 18 , 21
Sunday
Tutorial : KG / DPP 10:00–11:00
Tutorial : SR / JKV 11:30–12:30
Apr 24 , 21
Saturday
Lecture : IS 12
Serre’s normality criterion, regular local rings are Cohen-Macaulay and normal
14:30–16:00
Lecture : JKV 11
Structure of injective modules
16:30–18:00
Apr 25 , 21
Sunday
Tutorial : JS / IS 10:00–11:00
Tutorial : SR / JKV 11:30–12:30
May 01 , 21
Saturday
Lecture : DPP 12
Cohen-Structure theorem for complete local rings
14:30–16:00
Lecture : JKV 12
Matlis duality
16:30–18:00
May 02 , 21
Sunday
Tutorial : KG / DPP 10:00–11:00
Tutorial : SR / JKV 11:30–12:30

 

 

 

 

File Attachments: